
CE384: Database Design
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

DML SQL Statements

Maryam Ramezani Database Design

SelectionProjection

Table 1 Table 2

Table 1Table 1

Join

2

Maryam Ramezani Database Design

CREATE TABLE AGENTS (

AGENT_CODE CHAR(6) PRIMARY KEY,

AGENT_NAME CHAR(40),

WORKING_AREA CHAR(35),

COMMISSION NUMERIC(10,2),

PHONE_NO CHAR(15),

COUNTRY VARCHAR(25)

);

CREATE TABLE CUSTOMER (

CUST_CODE VARCHAR(6) PRIMARY KEY,

CUST_NAME VARCHAR(40) NOT NULL,

CUST_CITY CHAR(35),

WORKING_AREA VARCHAR(35) NOT NULL,

CUST_COUNTRY VARCHAR(20) NOT NULL,

GRADE INTEGER,

OPENING_AMT NUMERIC(12,2) NOT NULL,

RECEIVE_AMT NUMERIC(12,2) NOT NULL,

PAYMENT_AMT NUMERIC(12,2) NOT NULL,

OUTSTANDING_AMT NUMERIC(12,2) NOT NULL,

PHONE_NO VARCHAR(17) NOT NULL,

AGENT_CODE CHAR(6) NOT NULL REFERENCES

AGENTS

);

CREATE TABLE ORDERS (

ORD_NUM SERIAL PRIMARY KEY,

ORD_AMOUNT NUMERIC(12,2) NOT NULL,

ADVANCE_AMOUNT NUMERIC(12,2) NOT NULL,

ORD_DATE DATE NOT NULL,

CUST_CODE VARCHAR(6) NOT NULL REFERENCES

CUSTOMER,

AGENT_CODE CHAR(6) NOT NULL REFERENCES

AGENTS,

ORD_DESCRIPTION VARCHAR(60) NOT NULL

);
3

Maryam Ramezani Database Design 4

 SELECT identifies what columns
 FROM identifies which table

Maryam Ramezani Database Design

SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table;

5

SELECT *

FROM departments;

Maryam Ramezani Database Design 6

Maryam Ramezani Database Design

SELECT department_id, location_id

FROM departments;

7

Create expressions with number and date data by using
arithmetic operators.

Maryam Ramezani Database Design

Operator

+

-

*

/

Description

Add

Subtract

Multiply

Divide

8

Maryam Ramezani Database Design

SELECT last_name, salary, salary + 300

FROM employees;

…

9

Maryam Ramezani Database Design

SELECT last_name, salary, 12*salary+100

FROM employees;

…

SELECT last_name, salary, 12*(salary+100)

FROM employees;

…

10

Maryam Ramezani Database Design

SELECT last_name, 12*salary*commission_pct

FROM employees;

…

…

11

 A null is a value that is unavailable, unassigned, unknown, or
inapplicable.

 A null is not the same as zero or a blank space.
 Arithmetic expressions containing a null value evaluate to null.

A column alias:
 Renames a column heading
 Is useful with calculations
 Immediately follows the
column name - there can also
be the optional AS keyword
between the column name
and alias
 Requires double quotation

marks if it contains spaces
or special characters or is

case sensitive

Maryam Ramezani Database Design

SELECT last_name "Name", salary*12 "Annual Salary"

FROM employees;

SELECT last_name AS name, commission_pct comm

FROM employees;

…

…

12

A concatenation operator:
 Concatenates columns or character strings to other columns
 Is represented by two vertical bars (||)
 Creates a resultant column that is a character expression

Maryam Ramezani Database Design

SELECT last_name||job_id AS "Employees"

FROM employees;

…

13

 A literal is a character, a
number, or a date
included in the SELECT
list.

 Date and character literal
values must be enclosed
within single quotation
marks.

 Each character string is
output once for each
row returned.

Maryam Ramezani Database Design

…

SELECT last_name ||' is a '||job_id

AS "Employee Details"

FROM employees;

14

 The default display of queries is all rows, including
duplicate rows.

Maryam Ramezani Database Design

SELECT department_id

FROM employees;

…

15

 Eliminate duplicate rows by using the DISTINCT keyword in
the SELECT clause.

Maryam Ramezani Database Design

SELECT DISTINCT department_id

FROM employees;

16

Maryam Ramezani Database Design 17

Maryam Ramezani Database Design

“retrieve all
employees
in department 90”

EMPLOYEES

…

18

 Restrict the rows returned by using the WHERE clause.

 The WHERE clause follows the FROM clause.

Maryam Ramezani Database Design

SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

19

 With fixed value

 With variable

Maryam Ramezani Database Design

SELECT employee_id, last_name, job_id, department_id

FROM employees

WHERE department_id = 90 ;

SELECT employee_id, last_name, job_id, department_id

FROM employees

WHERE department_id = :input ;

20

 Character strings and date values are enclosed in
single quotation marks.

 Character values are case sensitive, and date values
are format sensitive.

 The default date format is DD-MON-RR.

Maryam Ramezani Database Design

SELECT last_name, job_id, department_id

FROM employees

WHERE last_name = 'Whalen';

21

Maryam Ramezani Database Design

Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Not equal to

Operator

BETWEEN

...AND...

IN(set)

LIKE

IS NULL

Meaning

Between two values (inclusive),

Match any of a list of values

Match a character pattern

Is a null value

22

SELECT last_name, salary

FROM employees

WHERE salary <= 3000;

Maryam Ramezani Database Design 23

 Use the BETWEEN condition to display rows based on a
range of values.

Maryam Ramezani Database Design

SELECT last_name, salary

FROM employees

WHERE salary BETWEEN 2500 AND 3500;

Lower limit Upper limit

24

SELECT employee_id, last_name, salary, manager_id

FROM employees

WHERE manager_id IN (100, 101, 201);

 Use the IN membership condition to test for values in
a list.

Maryam Ramezani Database Design 25

 Use the LIKE condition to perform wildcard searches
of valid search string values.

 Search conditions can contain either literal characters
or numbers:
▪ % denotes zero or many characters.
▪ _ denotes one character.

Maryam Ramezani Database Design

SELECT first_name

FROM employees

WHERE first_name LIKE 'S%';

26

 You can combine pattern-matching characters.

 You can use the ESCAPE identifier to search for the
actual % and _ symbols.

Maryam Ramezani Database Design

SELECT last_name

FROM employees

WHERE last_name LIKE '_o%';

27

 Test for nulls with the IS NULL operator.

Maryam Ramezani Database Design

SELECT last_name, manager_id

FROM employees

WHERE manager_id IS NULL;

28

Maryam Ramezani Database Design

Operator

AND

OR

NOT

Meaning

Returns TRUE if both component

conditions are true

Returns TRUE if either component

condition is true

Returns TRUE if the following

condition is false

29

 AND requires both conditions to be true.

Maryam Ramezani Database Design

SELECT employee_id, last_name, job_id, salary

FROM employees

WHERE salary >=10000

AND job_id LIKE '%MAN%';

30

 OR requires either condition to be true.

Maryam Ramezani Database Design

SELECT employee_id, last_name, job_id, salary

FROM employees

WHERE salary >= 10000

OR job_id LIKE '%MAN%';

31

SELECT last_name, job_id

FROM employees

WHERE job_id

NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP');

Maryam Ramezani Database Design 32

Maryam Ramezani Database Design

Override rules of precedence by using parentheses.

Order Evaluated Operator

1 Arithmetic operators

2 Concatenation operator

3 Comparison conditions

4 IS [NOT] NULL, LIKE, [NOT] IN

5 [NOT] BETWEEN

6 NOT logical condition

7 AND logical condition

8 OR logical condition

33

SELECT last_name, job_id, salary

FROM employees

WHERE job_id = 'SA_REP'

OR job_id = 'AD_PRES'

AND salary > 15000;

Maryam Ramezani Database Design 34

SELECT last_name, job_id, salary

FROM employees

WHERE (job_id = 'SA_REP'

OR job_id = 'AD_PRES')

AND salary > 15000;

 Use parentheses to force priority.

Maryam Ramezani Database Design 35

SELECT last_name, job_id, department_id, hire_date

FROM employees

ORDER BY hire_date ;

 Sort rows with the ORDER BY clause
▪ ASC: ascending order, default
▪ DESC: descending order

 The ORDER BY clause comes last in the SELECT statement.

Maryam Ramezani Database Design

…

36

Maryam Ramezani Database Design

SELECT last_name, job_id, department_id, hire_date

FROM employees

ORDER BY hire_date DESC ;

…

37

Maryam Ramezani Database Design

SELECT employee_id, last_name, salary*12 annsal

FROM employees

ORDER BY annsal;

…

38

 The order of ORDER BY list is the order of sort.

 You can sort by a column that is not in the SELECT list.
Maryam Ramezani Database Design

SELECT last_name, department_id, salary

FROM employees

ORDER BY department_id, salary DESC;

…

39

In this lesson, you should have learned how to:
 Use the WHERE clause to restrict rows of output
▪ Use the comparison conditions
▪ Use the BETWEEN, IN, LIKE, and NULL conditions
▪ Apply the logical AND, OR, and NOT operators

 Use the ORDER BY clause to sort rows of output

Maryam Ramezani Database Design

SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)]

[ORDER BY {column, expr, alias} [ASC|DESC]];

40

Maryam Ramezani Database Design 41

Maryam Ramezani Database Design

Function
Input

arg 1

arg 2

arg n

Function

performs action

Output

Result

value

42

Maryam Ramezani Database Design

Functions

Single-row

functions

Multiple-row

functions

43

Single row functions:
 Manipulate data items
 Accept arguments and return one value
 Act on each row returned
 Return one result per row
 May modify the data type
 Can be nested
 Accept arguments which can be a column or an

expression

Maryam Ramezani Database Design

function_name [(arg1, arg2,...)]

44

Maryam Ramezani Database Design

Conversion

Character

Number

Date

General
Single-row

functions

45

Maryam Ramezani Database Design

Character

functions

LOWER

UPPER

INITCAP

CONCAT

SUBSTR

LENGTH

INSTR

LPAD | RPAD

TRIM

REPLACE

Case-manipulation

functions

Character-manipulation

functions

46

Function Result

 These functions convert case for character strings.

Maryam Ramezani Database Design

LOWER('SQL Course')

UPPER('SQL Course')

INITCAP('SQL Course')

sql course

SQL COURSE

Sql Course

47

 Display the employee number, name, and department
number for employee Higgins:

Maryam Ramezani Database Design

SELECT employee_id, last_name, department_id

FROM employees

WHERE last_name = 'higgins';

no rows selected

SELECT employee_id, last_name, department_id

FROM employees

WHERE LOWER(last_name) = 'higgins';

48

CONCAT('Hello', 'World')

SUBSTR('HelloWorld',1,5)

LENGTH('HelloWorld')

INSTR('HelloWorld', 'W')

LPAD(salary,10,'*')

RPAD(salary, 10, '*')

TRIM('H' FROM 'HelloWorld')

HelloWorld

Hello

10

6

*****24000

24000*****

elloWorld

Function Result

 These functions manipulate character strings:

Maryam Ramezani Database Design 49

SELECT employee_id, CONCAT(first_name, last_name) NAME,

job_id, LENGTH (last_name),

INSTR(last_name, 'a') "Contains 'a'?"

FROM employees

WHERE SUBSTR(job_id, 4) = 'REP';

Maryam Ramezani Database Design

1

2

31 2

3

50

 ROUND: Rounds value to specified decimal
ROUND(45.926, 2) 45.93

 TRUNC: Truncates value to specified decimal
TRUNC(45.926, 2) 45.92

 MOD: Returns remainder of division
MOD(1600, 300) 100

Maryam Ramezani Database Design 51

SELECT ROUND(45.923,2), ROUND(45.923,0),

ROUND(45.923,-1)

FROM DUAL;

Maryam Ramezani Database Design

DUAL is a dummy table you can use to view results
from functions and calculations. Postgres does not need it!!

1 2

3

31 2

52

SELECT TRUNC(45.923,2), TRUNC(45.923),

TRUNC(45.923,-2)

FROM DUAL;

Maryam Ramezani Database Design

31 2

1 2

3

53

SELECT last_name, salary, MOD(salary, 5000)

FROM employees

WHERE job_id = 'SA_REP';

 Calculate the remainder of a salary after it is divided
by 5000 for all employees whose job title is sales
representative.

Maryam Ramezani Database Design 54

Maryam Ramezani Database Design

Number of months
between two dates

MONTHS_BETWEEN

ADD_MONTHS

NEXT_DAY

LAST_DAY

ROUND

TRUNC

Add calendar months to
date

Next day of the date
specified

Last day of the month

Round date

Truncate date

Function Description

55

Maryam Ramezani Database Design

Implicit data type

conversion

Explicit data type

conversion

Data type

conversion

56

 Single-row functions can be nested to any level.
 Nested functions are evaluated from deepest level to

the least deep level.

Maryam Ramezani Database Design

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3

57

SELECT last_name,

coalesce (null,null,'No Manager')

FROM employees

WHERE manager_id IS NULL;

Maryam Ramezani Database Design 58

SELECT last_name, job_id, salary,

CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

WHEN 'ST_CLERK' THEN 1.15*salary

WHEN 'SA_REP' THEN 1.20*salary

ELSE salary END "REVISED_SALARY"

FROM employees;

 Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

Maryam Ramezani Database Design

…

…

59

Maryam Ramezani Database Design 60

 Single-row functions can be nested to any level.
 Nested functions are evaluated from deepest level to

the least deep level.

Maryam Ramezani Database Design

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3

61

Maryam Ramezani Database Design 62

Maryam Ramezani Database Design

EMPLOYEES DEPARTMENTS

…

…

63

 A join combines two or more tables side by side. If you do
not specify how to join the tables, you get a Cartesian
product. This means that SQL combines each row from the
first table with every row from the second table.

 A Cartesian product is formed when:
▪ A join condition is omitted
▪ A join condition is invalid
▪ All rows in the first table are joined to all rows in the second table

 To avoid a Cartesian product, always include a valid join
condition in a WHERE clause.

Maryam Ramezani Database Design 64

 SELECT A.*, B.* FROM FRUITS A, SIZES B

Maryam Ramezani Database Design 65

Maryam Ramezani Database Design

Cartesian

product:

20x8=160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

66

 SELECT A.fruitName, B.sizeName FROM FRUITS A,SIZES B

WHERE A.FRUITID = B.FRUITID;

Maryam Ramezani Database Design 67

 Use a join to query data from more than one table.

 Write the join condition in the WHERE clause.
 Prefix the column name with the table name when the

same column name appears in more than one table.

Maryam Ramezani Database Design

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column1 = table2.column2;

68

 An equijoin is a join
based on equality or
matching column
values. This equality is
indicated with an
equal sign (=) as the
comparison operator
in the WHERE clause,
as the following query
shows.

Maryam Ramezani Database Design

EMPLOYEES DEPARTMENTS

Foreign key Primary key

… …

69

SELECT employees.employee_id, employees.last_name,

employees.department_id, departments.department_id,

departments.location_id

FROM employees, departments

WHERE employees.department_id = departments.department_id;

Maryam Ramezani Database Design

…

70

SELECT last_name, employees.department_id,department_name

FROM employees, departments

WHERE employees.department_id = departments.department_id

AND last_name = 'Matos'

Maryam Ramezani Database Design

EMPLOYEES DEPARTMENTS

… …

71

 Use table prefixes to qualify column names that are in
multiple tables.

 Improve performance by using table prefixes.
 Distinguish columns that have identical names but

reside in different tables by using column aliases.

Maryam Ramezani Database Design 72

SELECT e.employee_id, e.last_name, e.department_id,

d.department_id, d.location_id

FROM employees e , departments d

WHERE e.department_id = d.department_id;

 Simplify queries by using table aliases.
 Improve performance by using table prefixes.

Maryam Ramezani Database Design 73

 To join n tables together, you
need a minimum of n-1 join
conditions. For example, to join
three tables, a minimum of two
joins is required.

Maryam Ramezani Database Design

EMPLOYEES LOCATIONSDEPARTMENTS

…

74

Maryam Ramezani Database Design

EMPLOYEES JOB_GRADES

Salary in the EMPLOYEES

table must be between

lowest salary and highest

salary in the JOB_GRADES

table.

…

75

Maryam Ramezani Database Design

SELECT e.last_name, e.salary, j.grade_level

FROM employees e, job_grades j

WHERE e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

…

76

Maryam Ramezani Database Design

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

MANAGER_ID in the WORKER table is equal to

EMPLOYEE_ID in the MANAGER table.

… …

77

Maryam Ramezani Database Design

SELECT worker.last_name || ' works for '

|| manager.last_name

FROM employees worker, employees manager

WHERE worker.manager_id = manager.employee_id ;

…

78

 The CROSS JOIN clause produces the cross-product
of two tables.

 This is the same as a Cartesian product between the
two tables.

Maryam Ramezani Database Design

SELECT last_name, department_name

FROM employees

CROSS JOIN departments ;

…

79

 The NATURAL JOIN clause is based on all columns in
the two tables that have the same name.

 It selects rows from the two tables that have equal
values in all matched columns.

 If the columns having the same names have different
data types, an error is returned.

Maryam Ramezani Database Design 80

SELECT department_id, department_name,

location_id, city

FROM departments

NATURAL JOIN locations ;

Maryam Ramezani Database Design 81

 If several columns have the same names but the data
types do not match, the NATURAL JOIN clause can be
modified with the USING clause to specify the columns
that should be used for an equijoin.

 Use the USING clause to match only one column when
more than one column matches.

 Do not use a table name or alias in the referenced
columns.

 The NATURAL JOIN and USING clauses are mutually
exclusive.

Maryam Ramezani Database Design 82

SELECT e.employee_id, e.last_name, d.location_id

FROM employees e JOIN departments d

USING (department_id) ;

Maryam Ramezani Database Design

…

SELECT employee_id, last_name,

employees.department_id, location_id

FROM employees, departments

WHERE employees.department_id = departments.department_id;

83

 The join condition for the natural join is basically an
equijoin of all columns with the same name.

 To specify arbitrary conditions or specify columns to
join, the ON clause is used.

 The join condition is separated from other search
conditions.

 The ON clause makes code easy to understand.

Maryam Ramezani Database Design 84

SELECT e.employee_id, e.last_name, e.department_id,

d.department_id, d.location_id

FROM employees e JOIN departments d

ON (e.department_id = d.department_id);

Maryam Ramezani Database Design

…

85

Maryam Ramezani Database Design

SELECT employee_id, city, department_name

FROM employees e

JOIN departments d

ON d.department_id = e.department_id

JOIN locations l

ON d.location_id = l.location_id;

…

86

Maryam Ramezani Database Design

EMPLOYEESDEPARTMENTS

There are no employees in

department 190.

…

87

 You use an outer join to also see rows that do not
meet the join condition.

 The left and right joint are the syntax.

Maryam Ramezani Database Design

SELECT table1.column, table2.column

FROM table1 left join table2

on table1.column = table2.column;

SELECT table1.column, table2.column

FROM table1 right join table2

on table1.column table2.column;

88

SELECT e.last_name, e.department_id, d.department_name

FROM employees e

LEFT OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

Maryam Ramezani Database Design

…

89

SELECT e.last_name, e.department_id, d.department_name

FROM employees e

RIGHT OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

Maryam Ramezani Database Design

…

90

 In SQL: 1999, the join of two tables returning only
matched rows is an inner join.

 A join between two tables that returns the results of
the inner join as well as unmatched rows left (or right)
tables is a left (or right) outer join.

 A join between two tables that returns the results of an
inner join as well as the results of a left and right join is
a full outer join.

Maryam Ramezani Database Design 91

SELECT e.last_name, e.department_id, d.department_name

FROM employees e

FULL OUTER JOIN departments d

ON (e.department_id = d.department_id) ;

Maryam Ramezani Database Design

…

92

SELECT e.employee_id, e.last_name, e.department_id,

d.department_id, d.location_id

FROM employees e JOIN departments d

ON (e.department_id = d.department_id)

AND e.manager_id = 149 ;

Maryam Ramezani Database Design 93

Aggregating Data
Using Group Functions

03

Maryam Ramezani Database Design 94

Maryam Ramezani Database Design

 Group functions operate on sets of rows to give one result per group.

95

Maryam Ramezani Database Design 96

• AVG
• COUNT
• MAX
• MIN
• STDDEV
• SUM
• VARIANCE

Maryam Ramezani Database Design 97

Maryam Ramezani Database Design

 You can use AVG and SUM for numeric data.

98

Maryam Ramezani Database Design

 You can use MIN and MAX for any data type.

99

Maryam Ramezani Database Design

 COUNT(*) returns the number of rows in a table.

100

Maryam Ramezani Database Design

 COUNT(expr) returns the number of rows with non-null values for
the expr.

 Display the number of department values in the EMPLOYEES table,
excluding the null values.

101

Maryam Ramezani Database Design

 COUNT(DISTINCT expr) returns the number of distinct non-null values
of the expr.

 Display the number of distinct department values in the EMPLOYEES table.

102

Maryam Ramezani Database Design

 Group functions ignore null values in the column.

 The coalesce function forces group functions to include null values.

103

Maryam Ramezani Database Design 104

Maryam Ramezani Database Design

 Divide rows in a table into smaller groups by using the GROUP BY
clause.

105

Maryam Ramezani Database Design

 All columns in the SELECT list that are not in group functions
must be in the GROUP BY clause.

106

Maryam Ramezani Database Design

 The GROUP BY column does not have to be in the SELECT list.

107

Maryam Ramezani Database Design 108

Maryam Ramezani Database Design 109

Maryam Ramezani Database Design

 Any column or expression in the SELECT list that is not an
aggregate function must be in the GROUP BY clause.

 Column missing in the GROUP BY clause:

110

Maryam Ramezani Database Design

 You cannot use the WHERE clause to restrict groups.
 You use the HAVING clause to restrict groups.
 You cannot use group functions in the WHERE clause.
 Cannot use the WHERE clause to restrict groups:

111

Maryam Ramezani Database Design 112

Maryam Ramezani Database Design

Use the HAVING clause to restrict groups:
1. Rows are grouped.
2. The group function is applied.
3. Groups matching the HAVING clause are displayed.

113

Maryam Ramezani Database Design 114

Maryam Ramezani Database Design 115

Maryam Ramezani Database Design

 Display the maximum average salary.

116

Maryam Ramezani Database Design

You should have learned how to:
 Use the group functions COUNT, MAX, MIN, AVG
 Write queries that use the GROUP BY clause
 Write queries that use the HAVING clause

117

Subqueries

04

Maryam Ramezani Database Design 118

Maryam Ramezani Database Design

Who has a salary greater than Abel’s?

119

Maryam Ramezani Database Design

 A nested query is a query inside another query
▪ The enclosing query also called outer query.
▪ Nested query is called inner query.

 It usually appears as a condition in where or having clauses.

 There can be multiple levels of nesting

 There are two kinds of nested queries
▪ Correlated
▪ Non-Correlated

Example:
Select movie_title

From movies
Where director_id IN (

Select person_id
From People
Where person_state = ‘TX’)

120

Maryam Ramezani Database Design

 Generates data required by outer query before it can be executed
 Inner query does not contain any reference to outer query
 Behaves like a procedure
 The result should not contain any column from the nested query
 Example:

Schema:
o People(person_fname, person_lname, person_id, person_state, person_city)

o Movies(movie_id, movie_title, director_id, studio_id)

Query: Select movie_title, studio_id
From Movies
Where director_id IN (Select person_id

From People

Where person_state = ‘TX’)

Steps:
o Subquery is executed
o Subquery results are plugged into the outer query
o The outer query is processed

121

Maryam Ramezani Database Design

 Contains reference to the outer query.
 Behaves like a loop.

Example:

Schema: People(person_fname, person_lname, person_id, person_state, person_city)
Cast_Movies(cast_member_id, role, movie_id)

Query: select person_fname, person_lname

From People p1

Where ‘Pam Green’ in (Select role

From Cast_Movies

Where p1.person_id = cast_member_id)

Steps:
▪ Contents of the table row in outer query are read
▪ Sub-query is executed using data in the row being processed.
▪ Results of the inner query are passed to the where in the outer query
▪ The Outer query is Processed
▪ Loop continues till all rows are exhausted

122

Maryam Ramezani Database Design

 The subquery (inner query) executes once before the main query.
 The result of the subquery is used by the main query (outer query).

123

Maryam Ramezani Database Design 124

Maryam Ramezani Database Design

 Enclose subqueries in parentheses.
 Place subqueries on the right side of the comparison condition.
 The ORDER BY clause in the subquery is not needed unless you are

performing Top-N analysis.
 Use single-row operators with single-row subqueries and use multiple-row

operators with multiple-row subqueries.

125

Maryam Ramezani Database Design

 Types of Subqueries
▪ Single-row subqueries: Queries that return only one row from the inner
SELECT statement

▪ Multiple-row subqueries: Queries that return more than one row from the
inner SELECT statement
▪ Note: There are also multiple-column subqueries: Queries that return more than one column from

the inner SELECT statement.

126

Maryam Ramezani Database Design

 Return only one row
 Use single-row comparison operators

127

Maryam Ramezani Database Design 128

Maryam Ramezani Database Design 129

Maryam Ramezani Database Design

 The Oracle server executes subqueries first.
 The Oracle server returns results into the HAVING clause of the main query.

130

Maryam Ramezani Database Design 131

Maryam Ramezani Database Design 132

Maryam Ramezani Database Design

 Return more than one row
 Use multiple-row comparison operators

133

Maryam Ramezani Database Design 134

SELECT employee_id, last_name, job_id, salary

FROM employees

WHERE salary < ALL

(SELECT salary

FROM employees

WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Maryam Ramezani Database Design

9000, 6000, 4200

135

Maryam Ramezani Database Design

SELECT emp.last_name

FROM employees emp

WHERE emp.employee_id NOT IN

(SELECT mgr.manager_id

FROM employees mgr);

no rows selected

136

 The ALL keyword modifies the greater than comparison operator
to mean greater than all values.

 The ANY keyword is not as restrictive as the ALL keyword.
 When used with the greater than comparison operator, "> ANY"

means greater than some value.
 The "= ANY" operator is exactly equivalent to the IN operator.
 However, the "!= ANY" (not equal any) is not equivalent to the

NOT IN operator.
Maryam Ramezani Database Design

theta ANY

theta SOME

theta ALL

=

≠

<

≤

≥

>

theta ∈

137

 Give the providers whose status are not maximum.

Maryam Ramezani Database Design

1- SELECT S#

FROM S

WHERE STATUS < ANY (SELECT DISTINCT STATUS FROM S)

2- SELECT S#

FROM S

WHERE STATUS < (SELECT MAX (STATUS) FROM S)

138

❑When a subquery uses the EXISTS operator, the subquery functions
as an existence test.

❑The WHERE clause of the outer query tests for the existence of rows
returned by the inner query.

❑The subquery does not actually produce any data; rather, it returns
a value of TRUE or FALSE.

❑The general format of a subquery WHERE clause with an EXISTS
operator is shown here.

❑Note that the NOT operator can also be used to negate the result of
the EXISTS operator.

WHERE [NOT] EXISTS (subquery)

Maryam Ramezani Database Design 139

Maryam Ramezani Database Design

SELECT emp_last_name "Last Name", emp_first_name "First Name"

FROM employee

WHERE EXISTS

(SELECT *

FROM dependent

WHERE emp_ssn = dep_emp_ssn);

Last Name First Name

---------- ---------------

Joyner Suzanne

Zhu Waiman

Bock Douglas

140

❑ Subqueries using an EXISTS operator are a bit different from other
subqueries, in the following ways:

o The keyword EXISTS is not preceded by a column name,
constant, or other expression.

o The SELECT clause list of a subquery that uses an EXISTS
operator almost always consists of an asterisk (*). This is
because there is no real point in listing column names since
you are simply testing for the existence of rows that meet the
conditions specified in the subquery.

o The subquery evaluates to TRUE or FALSE rather than
returning any data.

o A subquery that uses an EXISTS operator will always be a
correlated subquery.

Maryam Ramezani Database Design 141

❑ The EXISTS operator is very important, because there is
often no alternative to its use.

❑ All queries that use the IN operator or a modified
comparison operator (=, <, >, etc. modified by ANY or
ALL) can be expressed with the EXISTS operator.

❑ However, some queries formulated with EXISTS cannot
be expressed in any other way!

❑ The NOT EXISTS operator is the mirror-image of the
EXISTS operator.

❑ A query that uses NOT EXISTS in the WHERE clause is
satisfied if the subquery returns no rows.

Maryam Ramezani Database Design 142

Maryam Ramezani Database Design

SELECT emp_last_name

FROM employee

WHERE emp_ssn = ANY

(SELECT dep_emp_ssn

FROM dependent);

EMP_LAST_NAME

Bock

Zhu

Joyner

SELECT

emp_last_name

FROM employee

WHERE EXISTS

(SELECT *

FROM dependent

WHERE emp_ssn

= dep_emp_ssn);

EMP_LAST_NAME

Bock

Zhu

Joyner

143

 The SELECT statement shown below adds the ORDER BY
clause to specify sorting by first name within last name.

 Note that the ORDER BY clause is placed after the
WHERE clause, and that this includes the subquery as
part of the WHERE clause.

SELECT emp_last_name "Last Name",

emp_first_name "First Name"

FROM employee

WHERE EXISTS

(SELECT *

FROM dependent

WHERE emp_ssn = dep_emp_ssn)

ORDER BY emp_last_name, emp_first_name;

Maryam Ramezani Database Design

Output:

Last Name First Name

---------- ----------

Bock Douglas

Joyner Suzanne

Zhu Waiman

144

 Union Joins allow multiple query results to be combined into a single result
set

Syntax
Select select_list

From table [,table, ….]

[Where condition]

Union [All]

Select select_list

From table [,table, ….]

[Where condition]

 Notes:
▪ The number of columns selected for both the queries should be the same
▪ The columns are merged in order in which they are selected
▪ The duplicates are eliminated from the combined table
▪ More than two tables can be joined together

Maryam Ramezani Database Design

Example

Select person_id,

person_city, person_state

From People

Union

Select studio_id,

studio_city,

studio_state

From Studios

145

 Union query eliminates all duplicates in the resultant table
▪ Union All is used when we do not want to eliminate the duplicates
▪ Union and Union distinct are the same.

 Union and Order By can be used together to order the results of
the combined table
▪ This clause is not allowed when a single column result is obtained and the all keyword is used since the

duplicates are eliminated and there is nothing to order by

 Example
Select studio_id, studio_state

From Studios

Union

Select Person_id, person_state

From People

Order By studio_state

Maryam Ramezani Database Design 146

 In the Intersect Query results of two separate queries
are concatenated, however, only common elements
of the two queries are included in the resultset

 Example
Select person_state

From People

Intersect

Select studio_state

From Studios

Maryam Ramezani Database Design 147

Maryam Ramezani Database Design

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Q1 Q2

148

 They can simplify the logic and readability of your
query, especially if you need to filter or aggregate
data before joining it with another table.

 They can help you avoid duplicate rows or columns
that might result from a join operation.

 They can enable you to perform complex calculations
or comparisons that might not be possible with a join.
▪ For example, you can use a subquery to find the average

salary of each department, and then compare it with the
salary of each employee in the main query.

Maryam Ramezani Database Design 149

Subqueries also have some drawbacks that can affect database
performance.
 They can increase the processing time and memory usage of

your query, especially if the subquery returns a large number of
rows or columns.

 They can limit the optimization options of the database system,
as some subqueries cannot use indexes or other techniques to
speed up the execution.

 They can introduce errors or inconsistencies if the subquery is not
correlated with the main query, or if the subquery data changes
during the execution of the main query.

Maryam Ramezani Database Design 150

Joins are another way to query data from multiple tables in a
database.

 They can reduce the number of queries and subqueries needed
to retrieve the data you want, which can save processing time
and memory.

 They can leverage the indexes and other features of the
database system to optimize the join operation and make it
faster and more efficient.

 They can ensure the consistency and accuracy of the data, as the
join condition determines which rows from each table are
matched and returned.

Maryam Ramezani Database Design 151

 They can complicate the syntax and readability of your query,
especially if you need to join multiple tables or use different types
of joins.

 They can generate unwanted or redundant rows or columns that
might affect the quality and size of the result set.

 They can require careful planning and design of the database
schema and the join condition, as poorly structured or indexed
tables or columns can slow down or fail the join operation.

Maryam Ramezani Database Design 152

 Deciding whether to use a subquery or a join for your query is dependent
on various factors, such as the data structure, the query complexity, the
database system, and the performance goals.

 As a general guideline, you should use a subquery if you need to filter or
aggregate data before joining it with another table, or if you need to
perform calculations or comparisons that are not possible with a join. On
the other hand, if you need to query data from multiple tables based on
a common column or condition, or if you want to take advantage of the
optimization features of the database system, then using a join is
recommended.

 Ultimately, it is best to test and compare the execution time and result
set of both options and choose the one that meets your requirements
and expectations.

Maryam Ramezani Database Design 153

Maryam Ramezani Database Design

(SELECT R.A, R.B

FROM R)

INTERSECT

(SELECT S.A, S.B

FROM S)

SELECT R.A, R.B

FROM R

WHERE EXISTS(

SELECT *

FROM S

WHERE R.A=S.A

AND R.B=S.B)

SELECT R.A, R.B

FROM R

WHERE NOT EXISTS(

SELECT *

FROM S

WHERE R.A=S.A AND

R.B=S.B)

INTERSECT and EXCEPT
not in some DBMSs!

If R, S have no duplicates, then
can write without sub-queries
(HOW?)

(SELECT R.A, R.B

FROM R)

EXCEPT

(SELECT S.A, S.B

FROM S)

154

Maryam Ramezani Database Design 155

Maryam Ramezani Database Design

DEPARTMENTS
New
row

…insert a new row
into the

DEPARMENTS
table…

156

 Add new rows to a table by using the INSERT
statement.

 Only one row is inserted at a time with this syntax.

Maryam Ramezani Database Design

INSERT INTO table [(column [, column...])]

VALUES (value [, value...]);

157

 Insert a new row containing values for each column.
 List values in the default order of the columns in the

table.
 Optionally, list the columns in the INSERT clause.

 Enclose character and date values within single
quotation marks.

Maryam Ramezani Database Design

INSERT INTO departments(department_id, department_name,

manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);

1 row created.

158

INSERT INTO departments

VALUES (100, 'Finance', NULL, NULL);

1 row created.

INSERT INTO departments (department_id,

department_name)

VALUES (30, 'Purchasing');

1 row created.

 Implicit method: Omit the column from the column list.

Maryam Ramezani Database Design

• Explicit method: Specify the NULL keyword in the
VALUES clause.

159

 The current_date function records the current date.

Maryam Ramezani Database Design

INSERT INTO employees (employee_id,

first_name, last_name,

email, phone_number,

hire_date, job_id, salary,

commission_pct, manager_id,

department_id)

VALUES (113,

'Louis', 'Popp',

'LPOPP', '515.124.4567’,

current_date, 'AC_ACCOUNT', 6900,

NULL, 205, 100);

1 row created.

160

INSERT INTO departments

(department_id, department_name, location_id)

VALUES (:department_id, ‘:department_name’,:location);

 Use : substitution in a SQL statement to prompt for values.
 : is a placeholder for the variable value.

Maryam Ramezani Database Design

1 row created.

161

 Write your INSERT statement with a subquery.

 Do not use the VALUES clause.
 Match the number of columns in the INSERT clause to

those in the subquery.

Maryam Ramezani Database Design

INSERT INTO sales_reps(id, name, salary, commission_pct)

SELECT employee_id, last_name, salary, commission_pct

FROM employees

WHERE job_id LIKE '%REP%';

4 rows created.

162

Maryam Ramezani Database Design

EMPLOYEES

Update rows in the EMPLOYEES table.

163

 Modify existing rows with the UPDATE statement.

 Update more than one row at a time, if required.

Maryam Ramezani Database Design

UPDATE table

SET column = value [, column = value, ...]

[WHERE condition];

164

UPDATE employees

SET department_id = 70

WHERE employee_id = 113;

1 row updated.

 Specific row or rows are modified if you specify the WHERE clause.

 All rows in the table are modified if you omit the WHERE clause.

Maryam Ramezani Database Design

UPDATE copy_emp

SET department_id = 110;

22 rows updated.

165

UPDATE employees

SET job_id = (SELECT job_id

FROM employees

WHERE employee_id = 205),

salary = (SELECT salary

FROM employees

WHERE employee_id = 205)

WHERE employee_id = 114;

1 row updated.

 Update employee 114’s job and salary to match that of employee
205.

Maryam Ramezani Database Design 166

UPDATE copy_emp

SET department_id = (SELECT department_id

FROM employees

WHERE employee_id = 100)

WHERE job_id = (SELECT job_id

FROM employees

WHERE employee_id = 200);

1 row updated.

 Use subqueries in UPDATE statements to update rows in a table
based on values from another table.

Maryam Ramezani Database Design 167

UPDATE employees

*

ERROR at line 1:

ORA-02291: integrity constraint (HR.EMP_DEPT_FK)

violated - parent key not found

UPDATE employees

SET department_id = 55

WHERE department_id = 110;

Department number 55 does not exist in the parent table!

Maryam Ramezani Database Design 168

Delete a row from the DEPARTMENTS table.

Maryam Ramezani Database Design

DEPARTMENTS

169

 You can remove existing rows from a table by using
the DELETE statement.

Maryam Ramezani Database Design

DELETE [FROM] table

[WHERE condition];

170

 Specific rows are deleted if you specify the WHERE clause.

 All rows in the table are deleted if you omit the WHERE clause.

Maryam Ramezani Database Design

DELETE FROM departments

WHERE department_name = 'Finance';

1 row deleted.

DELETE FROM copy_emp;

22 rows deleted.

171

DELETE FROM employees

WHERE department_id =

(SELECT department_id

FROM departments

WHERE department_name LIKE '%Public%');

1 row deleted.

 Use subqueries in DELETE statements to remove rows
from a table based on values from another table.

Maryam Ramezani Database Design 172

You cannot delete a row that contains a primary key that
is used as a foreign key in another table.

Maryam Ramezani Database Design

DELETE FROM departments

WHERE department_id = 60;

DELETE FROM departments

*

ERROR at line 1:

ORA-02292: integrity constraint (HR.EMP_DEPT_FK)

violated - child record found

173

 With the explicit default feature, you can use the
DEFAULT keyword as a column value where the
column default is desired.

 The addition of this feature is for compliance with the
SQL: 1999 Standard.

 This allows the user to control where and when the
default value should be applied to data.

 Explicit defaults can be used in INSERT and UPDATE
statements.

Maryam Ramezani Database Design 174

 DEFAULT with INSERT:

 DEFAULT with UPDATE:

 If no default value for the corresponding column has been specified,
Postgres sets the column to null.

Maryam Ramezani Database Design

INSERT INTO departments

(department_id, department_name, manager_id)

VALUES (300, 'Engineering', DEFAULT);

UPDATE departments

SET manager_id = DEFAULT WHERE department_id = 10;

175

 Provides the ability to conditionally update or insert data into a
database table

 Performs an UPDATE if the row exists, and an INSERT if it is a
new row:
▪ Avoids separate updates
▪ Increases performance and ease of use
▪ Is useful in data warehousing applications: you may need to work with

data coming from multiple sources, some of which may be duplicates.
With the MERGE statement, you can conditionally add or modify rows.

 The MERGE statement is deterministic. You cannot update the
same row of the target table multiple times in the same MERGE
statement.

Maryam Ramezani Database Design 176

 You can conditionally insert or update rows in a table
by using the MERGE statement.

Maryam Ramezani Database Design

MERGE INTO table_name table_alias

USING (table|view|sub_query) alias

ON (join condition)

WHEN MATCHED THEN

UPDATE SET

col1 = col_val1,

col2 = col2_val

WHEN NOT MATCHED THEN

INSERT (column_list)

VALUES (column_values);

177

MERGE INTO copy_emp c

USING employees e

ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN

UPDATE SET

c.first_name = e.first_name,

c.last_name = e.last_name,

...

c.department_id = e.department_id

WHEN NOT MATCHED THEN

INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,

e.salary, e.commission_pct, e.manager_id,

e.department_id);

Maryam Ramezani Database Design

 Insert or update rows in the COPY_EMP table to match the EMPLOYEES
table.
▪ The example shown matches the EMPLOYEE_ID in the COPY_EMP table to the EMPLOYEE_ID

in the EMPLOYEES table. If a match is found, the row in the COPY_EMP table is updated to
match the row in the EMPLOYEES table. If the row is not found, it is inserted into the
COPY_EMP table.

178

 The condition c.employee_id = e.employee_id is evaluated. Because the COPY_EMP table is empty, the condition returns false: there
are no matches. The logic falls into the WHEN NOT MATCHED clause, and the MERGE command inserts the rows of the EMPLOYEES
table into the COPY_EMP table.

 If rows existed in the COPY_EMP table and employee IDs matched in both tables (the COPY_EMP and EMPLOYEES tables), the
existing rows in the COPY_EMP table would be updated to match the EMPLOYEES table.

Maryam Ramezani Database Design

MERGE INTO copy_emp c

USING employees e

ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN

UPDATE SET

...

WHEN NOT MATCHED THEN

INSERT VALUES...;

SELECT *

FROM COPY_EMP;

no rows selected

SELECT *

FROM COPY_EMP;

20 rows selected.

179

Maryam Ramezani Database Design

Description

Adds a new row to the table

Modifies existing rows in the table

Removes existing rows from the table

Conditionally inserts or updates data in a table

Statement

INSERT

UPDATE

DELETE

MERGE

180

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: SELECT
	Slide 5: Basic SELECT Statement
	Slide 6: Selecting All Columns
	Slide 7: Selecting Specific Columns
	Slide 8: Arithmetic Expressions
	Slide 9: Using Arithmetic Operators
	Slide 10: Operator Precedence & Using Parentheses
	Slide 11: Defining a Null Value
	Slide 12: Using Column Aliases
	Slide 13: Concatenation Operator
	Slide 14: Literal Character Strings
	Slide 15: Duplicate Rows
	Slide 16: Eliminating Duplicate Rows
	Slide 17: Restricting and Sorting
	Slide 18: Limiting Rows Using a Selection
	Slide 19: Limiting the Rows Selected
	Slide 20: Using the WHERE Clause
	Slide 21: Character Strings and Dates
	Slide 22: Comparison Conditions
	Slide 23: Using Comparison Conditions
	Slide 24: Using the BETWEEN Condition
	Slide 25: Using the IN Condition
	Slide 26: Using the LIKE Condition
	Slide 27: Using the LIKE Condition
	Slide 28: Using the NULL Conditions
	Slide 29: Logical Conditions
	Slide 30: Using the AND Operator
	Slide 31: Using the OR Operator
	Slide 32: Using the NOT Operator
	Slide 33: Rules of Precedence
	Slide 34: Rules of Precedence
	Slide 35: Rules of Precedence
	Slide 36: ORDER BY Clause
	Slide 37: Sorting in Descending Order
	Slide 38: Sorting by Column Alias
	Slide 39: Sorting by Multiple Columns
	Slide 40: Summary
	Slide 41: Single-Row Functions
	Slide 42: SQL Functions
	Slide 43: Two Types of SQL Functions
	Slide 44: Single-Row Functions
	Slide 45: Single-Row Functions
	Slide 46: Character Functions
	Slide 47: Case Manipulation Functions
	Slide 48: Using Case Manipulation Functions
	Slide 49: Character-Manipulation Functions
	Slide 50: Using the Character-Manipulation Functions
	Slide 51: Number Functions
	Slide 52: Using the ROUND Function
	Slide 53: Using the TRUNC Function
	Slide 54: Using the MOD Function
	Slide 55: Working with Dates
	Slide 56: Conversion Functions
	Slide 57: Nesting Functions
	Slide 58: Nesting Functions
	Slide 59: Using the CASE Expression
	Slide 60: Displaying Data from Multiple Tables
	Slide 61: Nesting Functions
	Slide 62: Displaying Data from Multiple Tables
	Slide 63: Obtaining Data from Multiple Tables
	Slide 64: Cartesian Products
	Slide 65: Generating a Cartesian Product
	Slide 66: Generating a Cartesian Product
	Slide 67: Join
	Slide 68: Joining Tables
	Slide 69: What is an Equijoin?
	Slide 70: Retrieving Records with Equijoins
	Slide 71: Additional Search Conditions Using the AND Operator
	Slide 72: Qualifying Ambiguous Column Names
	Slide 73: Using Table Aliases
	Slide 74: Joining More than Two Tables
	Slide 75: Non-Equijoins
	Slide 76: Retrieving Records with Non-Equijoins
	Slide 77: Self Joins
	Slide 78: Joining a Table to Itself
	Slide 79: Creating Cross Joins
	Slide 80: Creating Natural Joins
	Slide 81: Retrieving Records with Natural Joins
	Slide 82: Creating Joins with the USING Clause
	Slide 83: Retrieving Records with the USING Clause
	Slide 84: Creating Joins with the ON Clause
	Slide 85: Retrieving Records with the ON Clause
	Slide 86: Creating Three-Way Joins with the ON Clause
	Slide 87: Outer Joins
	Slide 88: Outer Joins Syntax
	Slide 89: LEFT OUTER JOIN
	Slide 90: RIGHT OUTER JOIN
	Slide 91: INNER Versus OUTER Joins
	Slide 92: FULL OUTER JOIN
	Slide 93: Additional Conditions
	Slide 94
	Slide 95: What Are Group Functions?
	Slide 96: Types of Group Functions (Aggregations)
	Slide 97: Group Functions Syntax
	Slide 98: Using the AVG and SUM Functions
	Slide 99: Using the MIN and MAX Functions
	Slide 100: Using the COUNT Function
	Slide 101: Using the COUNT Function
	Slide 102: Using the DISTINCT Keyword
	Slide 103: Group Functions and Null Values
	Slide 104: Creating Groups of Data
	Slide 105: Creating Groups of Data: The GROUP BY Clause Syntax
	Slide 106: Using the GROUP BY Clause
	Slide 107: Using the GROUP BY Clause
	Slide 108: Grouping by More Than One Column
	Slide 109: Using the GROUP BY Clause on Multiple Columns
	Slide 110: Illegal Queries - Using Group Functions
	Slide 111: Illegal Queries - Using Group Functions
	Slide 112: Excluding Group Results
	Slide 113: Excluding Group Results: The HAVING Clause
	Slide 114: Using the HAVING Clause
	Slide 115: Using the HAVING Clause
	Slide 116: Nesting Group Functions
	Slide 117: Summary
	Slide 118
	Slide 119: Using a Subquery to Solve a Problem
	Slide 120: Nested Queries - Definitions
	Slide 121: Nested Queries: Non-Correlated
	Slide 122: Nested Queries: Correlated
	Slide 123: Subquery Syntax
	Slide 124: Using a Subquery
	Slide 125: Guidelines for Using Subqueries
	Slide 126: Types of Subqueries
	Slide 127: Single-Row Subqueries
	Slide 128: Executing Single-Row Subqueries
	Slide 129: Using Group Functions in a Subquery
	Slide 130: The HAVING Clause with Subqueries
	Slide 131: What is Wrong with this Statement?
	Slide 132: Will this Statement Return Rows?
	Slide 133: Multiple-Row Subqueries
	Slide 134: Using the ANY Operator in Multiple-Row Subqueries
	Slide 135: Using the ALL Operator in Multiple-Row Subqueries
	Slide 136: Null Values in a Subquery
	Slide 137: Any, Some, All
	Slide 138: Any, Some, All
	Slide 139: Subqueries and the EXISTS Operator
	Slide 140: Example
	Slide 141: Subqueries and the EXISTS operator
	Slide 142: Subqueries and the EXISTS operator
	Slide 143: Subqueries and the EXISTS operator
	Slide 144: Subqueries and the ORDER BY Clause
	Slide 145: Union
	Slide 146: Union (All & Order By)
	Slide 147: Intersect
	Slide 148: Except
	Slide 149: Subquery Benefits
	Slide 150: Subquery Drawbacks
	Slide 151: Join Benefits
	Slide 152: Join Drawbacks
	Slide 153: How to choose
	Slide 154: Nested queries as alternatives to INTERSECT and EXCEPT
	Slide 155: Manipulating Data
	Slide 156: Adding a New Row to a Table
	Slide 157: The INSERT Statement Syntax
	Slide 158: Inserting New Rows
	Slide 159: Inserting Rows with Null Values
	Slide 160: Inserting Special Values
	Slide 161: Creating a Script
	Slide 162: Copying Rows from Another Table
	Slide 163: Changing Data in a Table
	Slide 164: The UPDATE Statement Syntax
	Slide 165: Updating Rows in a Table
	Slide 166: Updating Two Columns with a Subquery
	Slide 167: Updating Rows Based on Another Table
	Slide 168: Updating Rows: Integrity Constraint Error
	Slide 169: Removing a Row from a Table
	Slide 170: The DELETE Statement
	Slide 171: Deleting Rows from a Table
	Slide 172: Deleting Rows Based on Another Table
	Slide 173: Deleting Rows: Integrity Constraint Error
	Slide 174: Overview of the Explicit Default Feature
	Slide 175: Using Explicit Default Values
	Slide 176: The MERGE Statement
	Slide 177: The MERGE Statement Syntax
	Slide 178: Merging Rows
	Slide 179: Merging Rows
	Slide 180: Summary

