DML SQL Statements

Introduction

Projection Selection

=i

Table 1 Table 1

1 E

Table 1 Table 2

Introduction

CREATE TABLE AGENTS (

AGENT CODE CHAR (6) PRIMARY KEY,

AGENT NAME CHAR(40),

WORKING AREA CHAR (35),

COMMISSION NUMERIC (10,2),

PHONE NO CHAR(15),

COUNTRY VARCHAR (25)

éREATE TABLE ORDERS (

ORD _NUM SERIAL PRIMARY KEY,

ORD AMOUNT NUMERIC(12,2) NOT NULL,
ADVANCE AMOUNT NUMERIC(12,2) NOT NULL,
ORD DATE DATE NOT NULL,

CUST CODE VARCHAR (6) NOT NULL REFERENCES
CUSTOMER,

AGENT CODE CHAR(6) NOT NULL REFERENCES
AGENTS,

ORD DESCRIPTION VARCHAR (60) NOT NULL

) ;

CREATE TABLE CUSTOMER (
CUST CODE VARCHAR (6) PRIMARY KEY,

CUST NAME VARCHAR (40) NOT NULL,

CUST CITY CHAR(35),

WORKING AREA VARCHAR (35) NOT NULL,

CUST COUNTRY VARCHAR (20) NOT NULL,
GRADE INTEGER,

OPENING AMT NUMERIC (12,2) NOT NULL,
RECEIVE AMT NUMERIC (12,2) NOT NULL,
PAYMENT AMT NUMERIC (12,2) NOT NULL,
OUTSTANDING AMT NUMERIC (12,2) NOT NULL,
PHONE NO VARCHAR(17) NOT NULL,

AGENT CODE CHAR(6) NOT NULL REFERENCES
AGENTS

) ;

SELECT

Maryam Ramezani Database Design

Basic SELECT Statement

SELECT *| { [DISTINCT] column|expression [alias],...}
FROM table,

SELECT identifies what columns
FROM identifies which table

Selecting All Columns

SELECT| *

FROM departments;

DEPARTMENT_ID
10
20
a0
60
g0
a0
110
190

B rows selected.

DEPARTMENT WAME MANAGER_ID
Administration
farketing
Shipping
IT
Sales
Executive
Accounting

Contracting

200
2m
124
103
149
100
205

LOCATION_ID

1700
1800
1500
1400
2500
1700
1700
1700

Selecting Specific Columns

SELECT |department_id, location_id
FROM departments;

| DEPARTMENT_ID | LOCATION_ID

| 10 1700
| 20 | 1800
| g0 | 1500
| B0 | 1400
| a0 | 2500
| 50 | 1700
| 110 || 1700
| 190 | 1700

B rows selected.

Arithmetic Expressions

Create expressions with number and date data by using
arithmetic operators.

Operator | Description

+ Add

Subtract

Multiply

/ Divide

Using Arithmetic Operators

SELECT last name, salary,|salary + 300
FROM employees;

LAST_NAME SALARY SALARY+300
King 24000 24300
Kochhar 17000 17300
De Haan 17000 17300
Hunald 000 9300
Ernst 6000 6300
Hartstein 13000 13300
Fay 6000 5300
Higgins 12000 12300
Gietz 8300 8600

20 rows selected.

Operator Precedence § Using Parentheses

SELECT last name, |salary, 12*(salary+100)
FROM employees;

| LAST_NAME | SALARY | 12(SALARY+100)
[King | 24000 || 289200
[Kochhar | 17000 || 205200
[De Haan | 17000 || 205200
SELECT last name, salary,|l2*salary+100 [Hunald | 5000 | 108200
FROM emp 1 oyees ; [Emst | 6000 | 73200
4
L
Hartstein 13000 157200
| | |
| LAST_NAME | SALARY | 12"SALARY+100 |ng- | 6000 | 73200
ing | 24000 | S8R0 [Higgins | 12000 || 145200
[Kachhar | 17000 | Soain | |Gtz | €300 | 100800
De Haan | 17000 | 20400 | 20 rows selected.
[Hunold | 5000 || 108100
[Emst | 6000 || 72100
L
[Hartstein | 13000 | 156100
[Fay | 5000 | 72100
[Higgins | 12000 || 144100
[Gigtz | 5300 | 99700

20 rows selected.

Defining a Null Value

A null is a value that is unavailable, unassigned, unknown, or
inapplicable.

A null is not the same as zero or a blank space.
Arithmetic expressions containing a null value evaluate to null.

SELECT last name, |12*salary*commission pct
FROM employees;

| LAST_NAME | JOB_ID [salarr | COMMISSION_PCT
[King |40 _PRES | 24000 |
" [Kachhar [AD_vP | 17000 |
[ZIatkey [SA_MAN | 10500 ||
el [5A_REFP | 11000 ||
" Taylar [sA_REP | 8600 |

[Gietz [ac_accounTt | 8300 ||

20 rows selected.

Using Column Aliases

A column alias: case sensitive
Renames a column he(]diﬂg SELECT last name AS[namel, commission pct
Is useful with calculations LFROM employees; I
Immediately follows the NAME | Comm l

King

column name - there can also e
be the optional AS keyword

be’gjweléﬂ the column name SELECT last name ['Name"|, salary*12["Annual Salary'|
ana allas

FROM employees;
Requires double quotation Arvual Saiary
marks if it contains spaces = i

Kochhar 204000

or special characters oris ...*™" o

20 rows selected.

20 rows selected.

Name

Concatenation Operator

A concatenation operator:
Concatenates columns or character strings to other columns
s represented by two vertical bars (|)
Creates a resultant column that is a character expression

SELECT last_namemjob_id AS "Employees"
FROM employees;

Employees

KingAD_PRES
KochharAD WP
De HaanAD WP
HunoldIT_PROG
ErmstlT_PROG
LorentzIT_FROG
fourgosST_MAN
RajsST_CLERK

L]
20 rows selected.

Literal Character Strings

A literal is a character, a
number, or a date
included in the SELECT
list.

Date and character literal
values must be enclosed kigsaso pres
within single qUOLAtION bt

Hunald is & IT_PROG

m O rkS. Erst is a IT_PROG
Larentz is a IT_PROG

Each character string isS fowgs =« 57w
OUtpU‘t once for each Rajs is a ST_CLERK

row returned.

SELECT last name [I]' is a '||ljob id
AS "Employee Details"
employees;

FROM

Employee Details

20 rowes selected.

Duplicate Rows

The default display of queries is all rows, including
duplicate rows.

SELECT department id
FROM employees;

DEPARTMENT_ID
an
30
an
&0
60
&0
a0
50
a0

20 rows selected.

Eliminating Duplicate Rows

Eliminate duplicate rows by using the DISTINCT keyword in
the SELECT clause.

SELECT |[DISTINCT|department id
FROM employees;

DEPARTMENT_ID
10
20
50
&0
g0
a0
110

8 rows selected.

Maryam Ramezani

Restricting and Sorting

Database Design

17

Limiting Rows Using a Selection

EMPLOYEES
EMPLOYEE_ID LAST NAME JOB_ID DEPARTMENT _ID
100 [King AD_PRES an
101 |[Kochhar AD WP 90
102 ||De Haan AD WP an
103 [Hunold IT_PROG g0
104 [Emst IT_PROG 60
107 |Lorentz IT_PROG &0
124 |Mourgos ST_MAM a0

20 rows selected.

“retrieve all

employees
in department 90”
EMPLOYEE_ID LAST HAME JOB ID DEPARTMENT _ID
100 | [King AD_PRES 30
101 ||Kochhar AD WP a0

102 ||De Haan AD WP 80

Limiting the Rows Selected

Restrict the rows returned by using the WHERE clause.

The WHERE clause follows the FROM clause.

SELECT *| { [DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)];

Using the wHERE Clause

With fixed value

SELECT employee id, last name, Jjob_id, department_id
FROM employees

|WHERE department_id = 90

EMPLOYEE_ID LAST _NAME JOB_ID DEPARTMENT_ID
100 |King AD_PRES a0
101 |Kachhar AD_WP a0
102 ||De Haan AD WP a0

With variable

SELECT employee id, last name, job_id, department id
FROM employees

WHERE department id = :input ;

Character Strings and Dates

Character strings and date values are enclosed in
single quotation marks.

Character values are case sensitive, and date values
are format sensitive.

The default date format is DD-MON-RR.

SELECT last name, job_id, department id
FROM employees

WHERE last_name = ;

Comparison Conditions

Operator Meaning Operator Meaning
_ BETWEEN Between two values (inclusive),
= Equal to
..AND...
> Greater than IN(set) Match any of a list of values
>= Greater than or equal to LIKE Match a character pattern
< Less than IS NULL Is a null value
<= Less than or equal to
<O Not equal to

Using Comparison Conditions

SELECT last name, salary
FROM emplovyees
WHERE | salary <= 3000Q;

LAST_NAME SALARY
2600

2500

Matos
“argas

Using the BETWEEN Condition

Use the BETWEEN condition to display rows based on @
range of values.

SELECT last name, salary
FROM employees

WHERE salarleETWEEN 2500 AND 3509;

Lower limit Upper limit

LAST MAME SALARY
Rajs 3500
Davies 3100
Matos 2600
Wargas 2500

Using the In Condition

U?_etthe IN membership condition to test for values in
a list.

SELECT employee id, last name, salary, manager_ id
FROM employees

WHERE manager_idl IN (100, 101, 201|;

| EMPLOYEE_ID | LAST_NAME [saLary | MANAGER_ID

| 202 |[Fay | 6000 | 201
| 200 | [halen | 4400 | 1071
| 205 |[Higgins | 12000 | 1071
| 101 |[Kachhar | 17000 | 100
| 102 ||De Haan | 17000 | 100
| 124 [Maurgos | 5800 | 100
| 149 |[Flotkey | 10500 | 100
| 201 |[Hartstein | 13000 | 100
]

rows selected.

Using the LIKE Condition

Use the LIKE condition to perform wildcard searches

of valid search string values.
Search conditions can contain either literal characters

or numbers:
% denotes zero or many characters.

_ denotes one character.

SELECT first_name

FROM employees
WHERE first name|LIKE 'S%'|;

Using the LIKE Condition

You can combine pattern-matching characters.

SELECT last name
FROM employees
WHERE last name| LIKE ' o%'|;

LAST_NAME

You can use the ESCAPE identifier to search for the
actual % and _ symbols.

Using the NULL Conditions

Test for nulls with the IS NULL operator.

SELECT last name, manager id
FROM employees

WHERE |manager id IS NULH;

LAST_NAME MANAGER_ID

King

Logical Conditions

Operator Meaning

AND Returns TRUE if both component
conditions are true

OR Returns TRUE if either component
condition is true

NOT Returns TRUE if the following
condition is false

Using the aAND Operator

AND requires both conditions to be true.

SELECT employee id, last name, job id, salary
FROM employees

WHERE |salary >=10000
AND job id LIKE '$MAN%'(;

EMPLOYEE_ID LAST NAME
149 ||Zlotkey SA_MAN
201 |Hartstein Ttk 1AM

JOB_ID SALARY

10500
13000

Using the OR Operator

OR requires either condition to be true.

SELECT employee id, last name, Jjob_id, salary
FROM employees

WHERE | salary >= 10000

OR job id LIKE '3%MAN%

EMPLOYEE_ID LAST NAME JOB_ID SALARY
100 ||King AD_PRES 24000
101 ||Kochhar AD WP 17000
102 |De Haan AD_WVP 17000
124 |Mourgos ST_MAN 5300
149 | Zlotkey SA_MAN 10500
174 || Abel 54 _REP 11000
201 [Hartstein MK AN 13000
205 |[Higgins AC_MGR 12000

8 rows selected.

Using the NOT Operator

SELECT last name, job id
FROM employees

WHERE [job_id

NOT IN ('IT PROG',

'ST CLERK', 'SA REP'

| LAST_NAME | JOB_ID
[King |aD_PRES
[Kochhar |40 WP

[De Haan AD_WP
|Mourgos |ST_MAN
[Fiatkey [2A_MAN
[whalen |AD_ASST
[Hartstein [Ib<_nan

[Fay [r1_REP
[Higgins |AC_MGR
[Gietz [AC_ACCOUNT

10 rows selected.

Rules of Precedence

Order Evaluated Operator

1 Arithmetic operators
Concatenation operator
Comparison conditions
IS [NOT] NULL, LIKE, [NOT] IN
[NOT] BETWEEN
NOT logical condition
AND logical condition
OR logical condition

00 NO O b WD

Override rules of precedence by using parentheses.

Rules of Precedence

SELECT last name, job id, salary
FROM employees

WHERE job_id = 'SA REP'

OR job_id = 'AD PRES'

AND salary > 15000;

LAST_NAME JOB_ID SALARY
King AD PRES 24000
Ahel SA_REP 11000
Taylor SA_REP 8600

Grant SA_REP 7000

Rules of Precedence

Use parentheses to force priority.

SELECT last name, job_id, salary
FROM employees

WHERE =>(job_id = 'SA REP'

OR gob_id = 'AD PRES')

AND salary > 15000;

LAST_NAME JOB_ID SALARY
King AD PRES 24000

ORDER BRY Clause

Sort rows with the ORDER BY clause
ASC: ascending order, default

DESC: descending order
The ORDER BY clause comes last in the SELECT statement.

SELECT last _name, job_id, department_id, hire_date
FROM employees
IORDER BY hire date|;

| LAST_NAME | JOB_ID | DEPARTMENT_ID | HIRE_DATE
[King [aD_PRES | 20 [17-Jun-a7
[whalen [AD_AssT | 10 [17-3EP-87
[achhar [aD_wP | 20 [21-sEP-82
[Hunold [T_PROG | B0 [03-JAN-50
[Ernst [m_PROG | B0 |[21-Mav-31

20 rows selected.

Sorting in Descending Order

SELECT last name, job_id, department id, hire_ date

FROM employees
DESC| ;

ORDER BY hire date

LAST MAME JOB_ID DEPARTMENT _ID HIRE_DATE
Zlotkey SA_MAN 80 |[29-JAM-00
Mourgos ST_MAN 20 [16-NOW-99
Grant 5A_REP 24-MAY-55
Larentz T_PROG G0 |07-FEB-99
Wargas ST_CLERK 500 |09-JUL-95
Taylor SA_REP 80 |[24-MAR-S5
Matos ST_CLERK 50 ||15-MAR-CE
Fay MikK_REF 20 [17-AUG-H7
Diavies ST_CLERK 500 [29-JAN-97

20 rows selected.

Sorting by Column Alias

SELECT employee id, last name, salary*12| annsal
FROM employees
ORDER BY |annsal|;

| EMPLOYEE_ID | LAST_NAME | ANNSAL

| 144 [Wargas | 30000
| 143 [Matos | 31200
| 142 |Davies | 37200
| 141 |Rajs | 42000
| 107 [Lorentz | 50400
| 200 | [Whalen | 52800
| 124 [Mourgos | BIBO0
| 104 |[Ernst | 72000
| 202 [Fay | 72000
| 176 ||Grant | 84000

20 rowes selected.

Sorting by Multiple Columns

The order of ORDER RY list is the order of sort.

SELECT last name, department id, salary
FROM employees

|ORDER BY department id, salary DESQ;

| LAST_NAME | DEPARTMENT_ID | SALARY

[whalen | 10 4400
[Hartstein | 20 | 13000
[Fay | 20 | BO00
[ourgos | &0 | 5800
[Rajs | 50 | 3500
[Davies | &0 | 3100
[Mtatos | 50 | 2600
[Wargas | 50 | 2600

20 rows selected.

You can sort by a column that is not in the SELECT list.

Summary

In this lesson, you should have learned how to:
Use the WHERE clause to restrict rows of output

Use the comparison conditions
Use the BETWEEN, IN, LIKE, and NULL conditions

Apply the logical AND, OR, and NOT operators
Use the ORDER BY clause to sort rows of output

SELECT *| { [DISTINCT] column|expression [alias],...}
FROM table

[WHERE condition(s)]

[ORDER BY {column, expr, alias} [ASC|DESC]];

Maryam Ramezani

Single-Row Functions

Database Design

41

SQL Functions

Input EURction Output
Function
performs action
.
Resuhi
'-. Vel UE

arg n

Two Types of SQL Functions

Multiple-row
functions

Single-row
functions

Sindle-Row Functions

Single row functions:
Manipulate data items
Accept arguments and return one value
Act on each row returned
Return one result per row
May modify the data type
Can be nested
Accept arguments which can be a column or an

eXpI’eS| function name [(argl, arg2,...)] I

Sindle-Row Functions

(GEneral Number
Single-row
functions

Canversion Date

Character Functions

Character:
NGNS
Caise=nnzlniatlaion) Criziragig=zrioulzeien)
UNCHONS INCHENS
LOWER CONCAT
UPPER SUBSTR
INITCAP LENGTH
INSTR
LPAD | RPAD
TRIM

REPLACE

Case Manipulation Functions

These functions convert case for character strings.

Function I Result

LOWER ('SQL Course') sgl course
UPPER ('SQL Course') SQL COURSE
INITCAP('SQL Course') |Sql Course

Using Case Manipulation Functions

Display the employee number, name, and department
number for employee Higgins:

SELECT employee id, last name, department id
FROM employees

WHERE last name = 'higgins';

no rows selected

SELECT employee id, last name, department id
FROM employees
WHERE |LOWER (last name) = 'higgins|;

EMPLOYEE_ID LAST _NAME DEPARTMENT_ID
205 |Higgins 110

Character-Manipulation Functions

These functions manipulate character strings:

Function Result
[CONCAT ('Hello', 'World') |HelloWorld |
SUBSTR ('HelloWorld',1,5) Hello
LENGTH ('HelloWorld') 10
INSTR('HelloWorld', 'W') 6
LPAD (salary,10,'*") *xkx*x*x24000
RPAD (salary, 10, '*') 24000***x**
TRIM('H' FROM 'HelloWorld') elloWorld

Using the Character-Manipulation

Functions

SELECT employee id, CONCAT (first name, last name) W’

job_id, |LENGTH (last namej ,
INSTR (last_name, 'a')|"Contains 'a'?'| ’
FROM employees
WHERE SUBSTR(job id, 4) = 'REP';
[EMPLOYEE_ID HANE [JoBD | | LENGTH{LAST_NAME) Contains ‘a*?
| 174 [EllenAbel [5A_REP | 4 D
| 176 |JonathonTaylor |4 _REP | 3 2
| 176 [KimberelyGrant |S4_REP | 5 3
| 02 |PatFay |m<_RER | 3 2

} }

Number Functions

ROUND: Rounds value to specified decimal

ROUND (45.926, 2) 45.93
TRUNC: Truncates value to specified decimal
TRUNC (45.926, 2) 45.92

MOD: Returns remainder of division
MOD (1600, 300) 100

Using the ROUND Function

} |

SELECT ROUND (45.923,2) ,[ROUND (45.923,0),
ROUND (45.923,-1)
FROM DUAL;

ROUND{45.923,2) ROUND(45.923,0) ROUND(45.923,-1)
45.92 46 a0

} }

DUAL is a dummy table you can use to view results
from functions and calculations. Postgres does not need it!

Using the TRUNC Function

| \

SELECT| TRUNC (45.923,2)|, | TRUNC(45.923],
TRUNC (45.923,-2)

FROM DUAL;

TRUNC[45.923,2) TRUNC45.923) TRUNC(45.923,2)
45,62 45 0

t t t

Using the MoD Function

Calculate the remainder of a salary after it is divided
by 5000 for all employees whose job title is sales
representative.

SELECT last name, salary,| MOD(salary, 5000)
FROM employees
WHERE job _id = 'SA REP';

| LAST_NAME

SALARY | MOD{SALARY,5000)
11000 | 1000
8600 | 3600
7000 | 2000

[Abel
|Tay|0r

|Grant

Working with Dates

Function

MONTHS BETWEEN

Description

Number of months
between two dates

ADD MONTHS Add calendar months to
date

NEXT DAY Next day of the date
specified

LAST DAY Last day of the month

ROUND Round date

TRUNC

Truncate date

Conversion Functions

DI E
CONVENRSION

Implicit data type Explicit data type

conversion conversion

Nesting Functions

Single-row functions can be nested to any level.
Nested functions are evaluated from deepest level to
the least deep level.

F3(F2(F1l (col,argl) ,arg2) ,arg3)

Step1=Result1
Step 2 = Result 2

Nesting Functions

SELECT last name,

coalesce (null,null, 'No Manager')
FROM employees

WHERE manager id IS NULL;

| LAST NAME NVL{TO_CHAR{MANAGER_ID),'NOMANAGER)

|King Mo Manager

Using the cASE Expression

Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

SELECT last name, job id, salary,

CASE job_id WHEN 'IT_PROE;' THEN 1.10*salary
WHEN 'ST CLERK' THEN 1l.15*salary
WHEN 'SA REP' THEN 1.20*salary

ELSE salary END "REVISED SALARY"

employees;

FROM

| LAST_NAME | JOB_ID [SALARY REVISED_SALARY

Larentz (T_PROG | 4200 4620
[Fourgos [ST_taan | 5800 5800
[Rajs [ST_CLERK | 3500 4025

[Gietz l&C_ACCOUNT | 8300 8300

20 rows selected.

Maryam Ramezani

Displaying Data
from Multiple
Tables

Database Design

60

Nesting Functions

Single-row functions can be nested to any level.
Nested functions are evaluated from deepest level to
the least deep level.

F3(F2(F1l (col,argl) ,arg2) ,arg3)

Step1=Result1
Step 2 = Result 2

Maryam Ramezani

Displaying Data
from Multiple
Tables

Database Design

62

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS

EMPLOYEE_ID ||_AST_NAME DEPARTMENT _ID |DEPARTMENT_ID DEPARTMENT_NAME|LOCATION_ID
100 | King an | 10 |Administration | 1700

101 |[Kachhar 90 | 20 [Marketing | 1800

.ns | &0 |Shipping | 1500
202 |[Fay 20 | g0 I | 1400

205 | [Higgins 110 | B0 [Sales | 2500

206 ||Gietz 110 | a0 |Executive | 1700

| 110 JAccounting | 1700

| 180 [Contracting | 1700

[EMPLOYEE_ID [DEPARTMENT_ID [DEPARTMENT_NAME
| 200 | 10 |Administration

| 01 || 20 |[Marketing

| 202 | 20 [Marketing

| 102 || 90 |[Executive

| 205 || 110 |Accounting

| 206 || 10 [[Accourting

Cartesian Products

A join combines two or more tables side by side. If you do
not specify how to join the tables, you get a Cartesian
product. This means that SQL combines each row from the
first table with every row from the second table.

A Cartesian product is formed when:
A join condition is omitted
A join condition is invalid
All rows in the first table are joined to all rows in the second table

To avoid a Cartesian product, always include a valid join
condition in a WHERE clause.

Generating a Cartesian Product

SELECT A.*, B.* FROM FRUITS A, SIZES B

Fruits | / Cartesian Product And Resultant Data

Apples | Fruits Sizes
Mangoes Apples - Small
Mangoes _ Small

Sizes Apples Medium

Small | Mangoes - Medium
Medium | Apples Big
Big | Mangoes - Big

Generating a Cartesian Product

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)
[EMPLOYEE_ID |LAST NAME |DEPARTMENT ID [DEPARTMENT_ID [DEPARTMENT_NAME L OCATION_ID
| 100 [King | o | 10 [Administration | 1700
| 101 |[Kachhar | a0 | 20 |Marksting | 1800
I | 50 [Shipping | 1500
| 202 [Fay | 20 | BO T | 1400
| 205 [Higgins | 110 | 80 [Sales | 2500
| 206 [Gietz | 110 | 90 | [Executive | 1700
0 rows selected. | 110 [Accounting | 1700
| 190 |[Contracting | 1700

3 rows selected.

[EMPLOYEE_ID [DEPARTMENT_ID [LOCATION_ID

| 100 || an || 1700

Cartesian | 1 | 0 | 1700
| 102 || a0 || 1700

product: | 103 | &0 | 1700
- | 104 | B0 || 1700
20x8=160 rows | o7] o=

160 rows selected.

SELECT A.fruitName,

WHERE A.FRUITID

N

Results

fruitName

N

1y

lessages

B.

A4

B.sizeName FROM FRUITS A,SIZES B
FRUITID;

sizeName Vv
Small
Big

Medium

If we apply the join
condition, we will get the
output accordingly as
given here. In this way,
we can avoid Cartesian
product and can get the
values according to our
requirements.

Joining Tables

Use a join to query data from more than one table.

SELECT tablel.column, table2.column
FROM tablel, table2
WHERE tablel.columnl = tablel2.column2;,

Write the join condition in the WHERE clause.
Prefix the column name with the table name when the
same column name appears in more than one table.

What is an Equijoin?

An equijoin is a join EMTE:ZK:? S
based on equalityor = o
matching column | 22 2
values. This equality is - .
indicated with an I = -
equal sign (=) as the | o =
comparison operator i -
inthe WHERE clause, = -

as the following query
shows.

DEPARTMENTS

DEPARTMENT_ID

| DEPARTMENT MAME

10

|Administratinn

20

|Marketing

20

|Marketing

a0

|Shipping

50

|Shipping

a0

|Shipping

a0

|Shipping

50

|Shipping

&0

T

]

T

B0

I

g0

|Sa|es

a0

|Sa|es

50

(Sales

Foreign key Primary key

Retrieving Records with Equijoins

SELECT employees.employee id, employees.last name,
employees.department id, departments.department id,
departments.location_id

FROM employees, departments
employees.department id = departments.department i

[EMPLOYEEID | LAST_NAME DEPARTMENT_ID DEPARTMENT_ID LOCATION_ID

| 200 | [Whalen 10 10 1700
| 201 |[Hartstein 20| 20 1800
| 202 [Fay 20| 20 1800
| 124 [Mourgos &0 || &0 1500
| 141 [Rajs 50 || 50 1500
| 142 |Davies 50 || 50 1500
| 143 [Matos 50 || 50 1500
| 144 [Wargas 50 || 50 1500

19 rowes selected.

Additional Search Conditions Using the aND

Operator

SELECT last name, employees.department id,department name
FROM employees, departments
WHERE employees.department id = departments.department id

AND last name = 'Matos'

EMPLOYEES DEPARTMENTS
| LAST_NAME | DEPARTMENT_ID [DEPARTMENT_ID | DEPARTMENT_NAME
|Wha|en | 10 | 10 |Administratinn
[Hartstein | 20 | 20 | [Marketing
[Fay | 20 | 20 [Marketing
[Mourgos | 50 | 80 |[Shipping
[Rajs | 50 | 50 [Shipping
[Davies | 50 | 50 |[Shipping
fhdatos 50 &0 [Shipping
[argas 50 50 [Shipping
[Hunold | &0 | B0 T
[Ernst | B0 | B0 T

Qualifying Ambiguous Column Names

Use table prefixes to qualify column names that are in
multiple tables.

Improve performance by using table prefixes.
Distinguish columns that have identical names but
reside in different tables by using column aliases.

Using Table Aliases

Simplify queries by using table aliases.
Improve performance by using table prefixes.

SELECT IElemployee_id, e|last name,|e|department id,
@department_id, IEI location_id

FROM employeesEI , departmentsIE

WHERE

Igdepartment id =E|department id;

Joining More than Two Tables

EMPLOYEES DEPARTMENTS LOCATIONS

| LAST_NAME DEPARTMENT_ID |~ DEPARTMENT ID LOCATION_ID | LocaTION_ID || CITY

King 90 | 10 1700 | 1400 |[Southlake

|Knchhar ag | 20 1800 | 1500 |Snuth San Francisco

D Haan a0 | 50 1800 | | 1700 || Seattle

[Hunald &0 | B0 1400 | 1800 |[Toranto

[Ernst BD | &0 200 | | 2500 | [Oxford

[Lorentz BD | 50 1700

Mourgos so| | 10 1700

[Rajs 50 | 190 1700

|D*5“’iES 50 8 rows selected.

|Mat05 a0

Wargas 50 . .

e = To join ntables together, you
[&bel a0
oy % need a minimum of n-1join

conditions. For example, to join
three tables, a minimum of two
joins is required.

Non-Equijoins

EMPLOYEES

| LAST_NAME [saLary
[King | 24000
[Kachhar | 17000
|De Haan | 17000
[Hunold | 2000
[Ernst | BO0D
|Lnrentz | 4200
|M0urgns | 5300
[Rajs | 3500
[Davies | 3100
[ratos | 2600
|\/argas | 2500
[Tlotkey | 10500
&bl | 11000
[Taylor | BBOD

20 rows selected.

JOB_GRADES

[6RA | LOWEST SAL | HIGHEST_SAL

| 1000 || 2939
= 3000 || 5999
c B000 || 5999
o 10000 || 14959
E 15000 || 24999
IF 25000 || 40000

Salary in the EMPLOYEES
table must be between
lowest salary and highest
salary in the JOB_GRADES
table.

Retrieving Records with Non-Equijoins

SELECT e.last name, e.salary, j.grade level
FROM employees e, job_grades j
WHERE e.salary

|BETWEEN j.lowest sal AND j.highest sa};

| LAST_HAME SALARY | GRA
[ratos 2600 |4
“argas 2500 |A
| |
[Lorentz 4200 B
Mourgos 5300 B
| |
Rajs 3500 B
| |
Davies 3100 B
| |
Wwihalen 4400 B
| |
[Hunald 9000 |[C
[Ernst g000 |[C

20 rows selected.

Self Joins

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)
EMPLOYEE_ID LAST NAME MANAGER_ID EMPLOYEE_ID LAST_NAME

100 ||King 100 |King

101 ||Kochhar 100 101 ||Kochhar
102 ||De Haan 100 102 ||De Haan
103 ||Hunold 102 103 ||Hunold
104 ||Ernst 103 104 ||[Emst

107 ||Lorentz 103 107 ||Lorentz
124 [|Mourgos 100 124 |Mourgos

MANAGER ID in the WORKER table is equal to
EMPLOYEE ID in the MANAGER table.

Joining a Table to Itself

SELECT worker.last name || ' works for '
| | manager.last name
FROM employees worker, employees manager

WHERE | worker .manager id = manager.emplovee id

| WORKER.LAST_NAME||"WORKSFOR'||MANAGER.LAST_NAME
|K0chhar works for King

|De Haan works for King

|Mourgns works for King

|Zlntkey warks for King

|Hartstein wiorks for King
|Wha|en warks for Kochhar
|Higgin5 works for Kochhar

|Hun0|d works for De Haan

|Ernst works for Hunold

19 rows selected.

Creating Cross Joins

The CROSS JOIN clause produces the cross-product

of two tables.
This is the same as a Cartesian product between the
two tables.

SELECT last name, department name
FROM employees
CROSS JOIN departments| ;

LAST NAME DEPARTMENT MAME
King Adrministration
Kochhar Administration
De Haan Administration
Hunold Administration

.
160 rows selected.

Creating Natural Joins

The NATURAL JOIN clause is based on all columns in
the two tables that have the saome name.

It selects rows from the two tables that have equal
values in all matched columns.

If the columns having the same names have different
data types, an error is returned.

Retrieving Records with Natural Joins

SELECT department id, department name,
location_id, city

FROM departments

NATURAL JOIN locations

| DEPARTMENT_ID | DEPARTMENT_NAME LOCATION_ID CITY
| B0 [[IT 1400 |Southlake

| 20 |Shipping 1500 §South San Francisco
| 10 [Administration 1700 |Seattle

| 90 [Executive 1700 |Seattls

| 110 |[Accaunting 1700 [Seattle

| 190 |[Contracting 1700 |Seattls

| 20 |N1arketing 1800 |Toronto

| 80 [Sales 2500 |Oxford

8 rows selected.

Creating Joins with the usInG Clause

If several columns have the same names but the data
types do not match, the NATURAL JOIN clause can be
modified with the USING clause to specify the columns
that should be used for an equijoin.

Use the USING clause to match only one column when
more than one column matches.

Do not use a table name or alias in the referenced
columns.

The NATURAL JOIN and USING clauses are mutually
exclusive.

Retrieving Records with the usInG Clause

SELECT e.employee id, e.last name, d.location_id
FROM employees e JOIN departments d
USING (department id)| ;

| EMPLOYEE_ID | LAST_NAME LOCATION_ID

| 200 |[whalen 1700
| 201 |[Hartstein 1800
| 202 [Fay 1800
| 124 [Mourgos 1500
| 141 |[Rajs 1500
|
|
|
|

142 ||Davies 1500
143 [Matos 1500
144 [argas 1500
103 [Hunald 1400

19 rowrs selected.

SELECT employee id, last name,
employees.department id, location id
FROM employees, departments
WHERE employees.department id = departments.department 1d;

Creating Joins with the on Clause

The join condition for the natural join is basically an
equijoin of all columns with the same name.

To specify arbitrary conditions or specify columns to
join, the ON clause is used.

The join condition is separated from other search
conditions.

The ON clause makes code easy to understand.

Retrieving Records with the on Clause

SELECT e.employee_id, e.last name, e.department id,
d.department id, d.location_id
FROM employees e JOIN departments d

ON (e.department id = d.department id

[EMPLOYEE_ID | LAST NAME [DEPARTMENT_ID | DEPARTMENT_ID LOCATION_ID

| 200 |[halen | 10 10 1700
| 201 |[Hartstein | 20 | 20 1800
| 202 |[Fay | 20| 20 1600
| 124 [Maurgos | 50 | 50 1500
| 141 |[Rajs | 50 | &0 1500
| 142 ||Davies | 50 | 50 1500
| 143 |[Matos | 50 | &0 1500

19 rows selected.

Creating Three-Way Joins with the on

Clause

SELECT employee id, city, department name
FROM employees e

JOIN departments d

ON d.department id = e.department_id
JOIN locations 1

ON d.location id = l.location id;

| EMPLOYEE_ID | CITY | DEPARTMENT_NAME
| 103 |[Southlake [T

| 104 ||Southlake [T

| 107 ||Southlake T

| 124 |Snuth San Francisco |Shipping

| 141 |Snuth San Francisco |Shipping

| 142 |Snuth San Francisco |Shipping

| 143 |Snuth San Francisco |Shipping

| 144 |Snuth San Francisco |Shipping

19 rowes selected.

Outer Joins

DEPARTMENTS EMPLOYEES
| DEPARTMENT NAME | DEPARTMENT_ID | DEPARTMENT_ID [LAST_HAME
[&dministration | 10 | o0 | King
[Marketing | 20 | a0 |[Kochhar
[Shipping | 50 | o0 [De Haan
[| B0 | B0 |[Hunald
[Sales | B0 | B0 [Ernst
|E}{ecutive | 30 | B0 |L0remz
|Accnunting | 110 | 50 |Mnurg05
|Cnntracting | 190 | 50 |Rajs
8 rows selected. | a0 |Da\ries

| 50 |Matns

| a0 |Vargas

| B0 |[Zlotkey

20 rows selected.

There are no employees in
department 190.

Outer Joins Syntax

You use an outer join to also see rows that do not
meet the join condition.
The left and right joint are the syntax.

SELECT tablel.column, table2.column
FROM tablel left join table2
on tablel.column = table2.column;,

SELECT tablel.column, table2.column
FROM tablel right join table2
on tablel.column table2.column,

LEFT OUTER JOIN

SELECT e.last name, e.department id, d.department name
FROM employees e

LEFT OUTER JOIN departments d

ON (e.department id = d.department id)

| LAST_NAME | DEPARTMENT_ID | DEPARTMENT_NAME
|Wha|en | 10 |Administratiun
|Fay | 20 |Marketing
|Har15tein | 20 |Marketing
'y

|De Haan | a0 |Executive
|K0chhar | a0 |E}{ecutive
|King | a0 |E}{ecuti\re
|Gietz | 10 |Accuunting
|Higgin5 | 110 |Acc0unting
{[Grant [[

20 rows selected.

RIGHT OUTER JOIN

SELECT e.last name, e.department id, d.department name
FROM employees e

RIGHT OUTER JOIN departments d

ON (e.department id = d.department id)| ;

| LAST_NAME | DEPARTMENT_ID | DEPARTMENT_NAME

|King | 30 |E}{ecutive

|Kochhar | g0 |E}{ecutive

|Wha|en | 10 |Admini51ratinn

|Hartstein | 20 |Marketing

|Fa},r | 20 |Marketing

|Higgins | 110 |Acc:nunting

|Gietz | 110 |Accnuming

| | |Cantracting |

20 rows selected.

INNER Versus OUTER Joins

In SQL: 1999, the join of two tables returning only
matched rows is an inner join.

A join between two tables that returns the results of
the inner join as well as unmatched rows left (or right)

tables is a left (or right) outer join.
A join between two tables that returns the results of an

inner join as well as the results of a left and right join is
a full outer join.

FULL OUTER JOIN

SELECT e.last name, e.department id, d.department name

FROM employees e

FULL OUTER JOIN departments d

ON (e.department id = d.department id) ;

| LAST_NAME | DEPARTMENT_ID | DEPARTMENT_NAME
|Wha|en | 10 |Administratinn

|Fay | 20 |Marketing

'y

|De Haan | a0 |Executi\re

|Knchhar | 90 |Executi\re

|King | 90 |Executi\re

|Gietz | 110 |Accaunting

|Higgins | 110 |Accuunting

Grant

Contracting

21 rows selected.

Additional Conditions

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location_id

FROM employees e JOIN departments d

ON (e.department _id = d.department_id)

AND e.manager id = 149|;

EMPLOYEE_ID LAST _NAME DEPARTMENT_ID DEPARTMENT_ID LOCATION_ID
174 |Abel g0 g0 2500
176 |[Taylor a0 a0 2500

7

Agdregating Data
Using Group Functions

kY

What Are Group Functions?

Group functions operate on sets of rows to give one result per group.

EMFLOYEES
DEPARTMENT ID SALARY
a0 24000
a0 17000
a0 17000
B0 2000
B0 B000
B0 4200
50 5300
50 3500
50 3100 MAX(SALARY)
A0 2600 24000
&0 2500
80 10500
80 11000
80 8500
7000
10 4400

20 rows selected

Types of Group Functions (Aggregations)

AVG
COUNT
MAX

MIN
STDDEV
SUM
VARIANCE

Group Functions Syntax

SELECT [column,] group Wunction (column),

i il e i

FROM table
[WHERE condition]
[GROUF BY column]

[CRDEE. BY column] ;

Using the avG and suM Functions

You can use AVG and SUM for numeric data.

SELECT |AVG(=salary), MAX (salary)
IN(=salary), SUM(=salary)

FROM employees
WHERE 3jobk_id LIKE '$REP%';

[AvGiSALARY) MAX(SALARY) RMIN{SALARY) SUM{SALARY) |
32600

a150 11000 G000

Using the MIN and Max Functions

You can use MIN and MAX for any data type.

SELECT| MIN (hire date), MAX(hire date)
FROM — cmployees,

MIN{HIRE MAXHIRE
17-JUn-a7 29-JAN-00

SELECT|MIN (last name), MAX(last name) |

FROM employees;

Using the cOUNT Function

COUNT(®) returns the number of rows in a table.

SELECT |COUNT (*)
FROM employees
WHERE department id = 50;

COUNTE

Using the cOUNT Function

COUNT (expr) returns the number of rows with non-null values for
the expr.

Display the number of department values in the EMPLOYEES table,
excluding the null values.

SELECT ICOU‘NT (commis sion_;pc:t)l

FROM employees
WHERE department id = 80;

COUNT(COMMISSION_PCT)

Using the pIsTINCT Keyword

COUNT (DISTINCT expr) returnsthe number of distinct non-null values
of the expr.
Display the number of distinct department values in the EMPLOYEES table.

SELECT| COUNT (DISTINCT department id)
FROM employees;

COUNTDISTINCTRDEPARTMENT_ID)

Group Functions and Null Values

Group functions ignore null values in the column.

‘ selectlavg(openinqﬂgmt)lfrom customer I

The coalesce function forces group functions to include null values.

select

avg (coalesce (opening _amt,0))

from cusztomer

Creating Groups of Data

EMPLOYEES
DEPARTMENT 1D SALARY

10 aano | 4400

Al 130

o RN 9300 The

2y iy average

&0 3500 DEPARTHENT _ID |AVG{SALARY)

=) 00 | 3500 sa_lary 10 4400

&0 2500 in 0 9500

&0 0| EMPLOYEES &0 3500

BO G000 t =] B400
able

&0 000 54ﬂ'ﬂf h B0 | 100333333

B0 4200 or eac %0 | 193333333

&0 1500 | department. 110 10150

B0 8600 § 10033 7000

ED 11000

=1 240

=1 170000

20 raws selected

Creating Groups of Data: The croup BY Clause

Syntax

D|ivide rows in a table into smaller groups by using the GROUP BY
clause.

SELECT column, group function(column)

FROM table

[WHERE condition]

[GROUP BY group by expresgsion]
[ORDEER BY column] ;

Using the crouP BY Clause

All columns in the SELECT list that are not in group functions
must be in the GROUP BY clause.

SELECT
FROM

DEPARTMENT 1D AVG[SALARY)
10 4400
i 8500
50 3500
60 G400
60 100333333
= 1] 19333.3333
110 10150

F000

8 rows selected

Using the crouP BY Clause

The GROUP BY column does not have to be in the SELECT list.

SELECT AVG(=alary)
FROM employees

AVG(SALARY)

4400

9500

3500

6400
1003333533
19333.3333
10150

7000

Grouping by More Than One Column

EMPLOYEES

DEPARTMENT _ID

B 3| =432 5 HIS|E B Hl=| =y=

20
110
110

20 rows selected

JOB_ID
AD PRES
AD_VE
AD WP
I1_FRLI
IT_PROG
IT_FROG
=1 MARN
ST _CLERK
ST_CLERK
ST _CLERK
ST_CLERK
S8, A
SA_REP
SA REF

hk_REF
AC MGR
AC ACCOUNT

SALARY
24000
17000
17000

L
E000
42000
SHL0
500
300
2600
2500
1ual
11000
8600

E000
12000
&300

“Add up the
salaries in
the EMPLOYEES
table
for each job,
grouped by
department.

DEFARTRMENT_ID

110
110

13 rows selected

8835258

JUB 1D
AD_ASST
MK_MAN
M¥_REP
ST CLERK
ST_MaN
IT_PROG
SA_MAN
SA_REP
AD_PRES
PR
AC_ACCOUNT
AC_MGR
SA_REP

SUM{SALARY)
4400
13000
B000
11700
5800
19200
10500
19600
24000
34000
8300
12000
Fo00

Using the GroUuP BY Clause on Multiple

Columns

SELECT department id dept id, job_id, SUM(salary)
FROM employees
SROUP BY department id, job id ;

DEPT 1D JOE 1D SUMsALAHY)

10 [AD_ASST 4400
20 [M_MAN 13000
20 |MK_REP G000
50 |ST_CLERK 11700
50 [ST_MAN SE00
&0 [IT_PROG 19200
80 [SA_MAN 10500
80 |[SA_REP 19600
a0 [AD_PRES 24000
30 (|AD VF 34000
110 [AC_ACCOUNT 8300
110 [AC_MGR 12000

SA_REP 7000

13 rows selecied

Illegal Queries - Using Group

Functions

Any column or expression in the SELECT list that is not an
aggregate function must be in the GROUP BY clause.

Column missing in the GROUP BY clause:

SELECT department_ id, COUNT(last name)
FROM employees;

Pt A e A o o e P

ERROR at line 1:
ORA-00937: not a =single-group group function

Illegal Queries - Using Group Functions

You cannot use the WHERE clause to restrict groups.
You use the HAVING clause to restrict groups.

You cannot use group functions in the WHERE clause.
Cannot use the WHERE clause to restrict groups:

SELECT department _id, AVG(salary)
FROM employees

WHERE AVG (salary) > 8000

GROUP BY department id;

WHERE AVG(=alary) > 8000

*

ERRCR at line 3:
ORA-00934: group function is not allowed here

Excluding Group Results

EMPLOYEES

DEPARTMENT _ID

20
110
110

20 rowes selected.

SALARY
24U
17000
17000

=]
BO00
4200
Sl
3500
3100
2600
2600
10600
1 TLIDLE
Fa00

6000
| UL
G300

The maximum
salary
per department
when it is
greater than
$10,000

DEPARTMENT _ID MAX[SALARY)

a 13000
B0 11000
o0 24000
10 12000

Excluding Group Results: The HAVING

Clause

Use the HAVING clause to restrict groups:

1. Rows are grouped.

2. The group function is applied.
3. Groups matching the HAVING clause are displayed.

SELECT ceolumn, greoup function

xxxxxxxx R Bt Mo o Sy Mo s

FROM table
[WHERE condition]

[GROUP BY group by expression]
[HAVING group condition]

[ORDER BY colimn] ;

Using the HAVING Clause

SELECT department id, MAX(salary)
FROM employees

GROUP BY department id

HAVING MAX (zsalary)>10000|;

DEPARTRENT 1D MAX(SALARY)
20 13000
a0 11000
a0 24000
110 12000

Using the HAVING Clause

SELECT job_id, SUM(salary) PAYROLL
FROM employees

WHERE job_id NOT LIKE 'S%REP%'
GROUP BY job id

HAVING SUM(salary) > 13000

ORDER BY SUM(=salary) ;

JOB_ID PAYROLL
M_PROG 19200

AD_PRES 24000
AD WP 34000

Nesting Group Functions

Display the maximum average salaruy.

SELECT MAX (AVG (salary))
FROM employees
GROUP BY department id;

MAXIAVG(SALARY))
193333333

Summary

You should have learned how to:
Use the group functions COUNT, MAX, MIN, AVG
Write queries that use the GROUP BY clause
Write queries that use the HAVING clause

SELECT column, group function (column)

FROM table

[WHERE condition]

[GROUP BY group by expression]
[HAVING group condition]

[ORDER BY column] ;

7
04

Subqueries

kY

Using a Subquery to Solve a Problem

Who has a salary greater than Abel’s?

Main Query:

Which employees have salaries greater
than Abel’s salary?

Subquery

? ru

;‘%ﬂr What is Abel’s salary?

Nested Queries - Definitions

A nested query is a query inside another query
The enclosing query also called outer queruy.
Nested query is called inner query.

It usually appears as a condition in where or having clauses.
There can be multiple levels of nesting

There are two kinds of nested queries
Correlated
Non-Correlated

Example:

Select movie title

From movies
Where director id IN (
~ Select person id
From People
Where person state = ‘TX')

Nested Queries: Non-Correlated

Generates data required by outer query before it can be executed

Inner query does not contain any reference to outer query
Behaves like a procedure

The result should not contain any column from the nested query
Example:

Schema:

People (person fname, person lname, person id, person state, person city)
Movies (movie id, movie title, director id, studio id)

Query: Select movie title, studio id
From Movies
Where director id IN (Select person id

From People
Where person state = ‘TX')
Steps:
Subquery is executed
Subqguery results are plugged into the outer query
The outer query is processed

Nested Queries: Correlated

Contains reference to the outer queru.
Behaves like a loop.
Example:

SchenmxPeople(person_fname, person lname, person id, person state, person city)
Cast Movies (cast member id, role, movie id)
Query: select person fname, person lname
From People pl
Where ‘Pam Green’ in (Select role
From Cast Movies
Where pl.person id = cast member id)
Steps:
Contents of the table row in outer query are read
Sub-query is executed using data in the row being processed.
Results of the inner query are passed to the where in the outer query
The Outer query is Processed

Loop continues till all rows are exhausted

Subquery Syntax

The subquery (inner query) executes once before the main query.
The result of the subquery is used by the main query (outer query).

SELECT select list
FROM table
WHERE expr operator
(SELECT select list
FROM table) ;

Using a Subquery

SELECT last name
FROM employees

WHERE salary >

(SELECT s=salary
FROM employees
WHERE last name = 'Abel');

Las] NAME

King
Kochhar
[ie Haan
Hartstein
Higains

Guidelines for Using Subqueries

Enclose subqgueries in parentheses.

Place subqueries on the right side of the comparison condition.

The ORDER BY clause in the subquery is not needed unless you are
performing Top-N analysis.

Use single-row operators with single-row subqueries and use multiple-row
operators with multiple-row subqueries.

Types of Subqueries

Types of Subqueries

Single-row subqueries: Queries that return only one row from the inner
SELECT statement

Multiple-row subqueries: Queries that return more than one row from the
inner SELECT statement

Note: There are also multiple-column subqueries: Queries that return more than one column from
the inner SELECT stater , Single-row subquery

Main query

returns

Subquery | ST_CLERK

* Multiple-row subquery

Main query

returns ST_CLERK
Subquery | SA_MAN

Singdle-Row Subqueries

Return only one row

Use single-row comparison operators

Operator

Meaning

Equal to

Greater than

Greater than or equal to
Less than

Less than or equal to

Not equal to

Executing Single-Row Subqueries

FROM
WHERE job id = =~ 0]

FROM employees

WHERE employee id = 141]
AND salary > S

(SELECT salary

FROM employees j
WHERE employee id = 143);

LAST_MNAME JOB_ID SALARY
Rajs ST_CLERK 3500
Diavies aT_CLERK 3100

Using Group Functions in a Subquery

SELECT last name, Jjob_id, salary
FROM employees

WHERE salazy =

(SELECT HIN{salary}

FROM employees)

LAST NAME JUg D SALAHRY
Wargas ET_CLERK 2500

The HAVING Clause with Subqueries

The Oracle server executes subqueries first.
The Oracle server returns results into the HAVING clause of the main queru.

SELECT department id, MIN(salary)

FROM employees
GROUP BY department id
HAVING H.IN{salaryﬂ > = ——

(SELECT MIN (salary)
FROM employees)

WHERE department id = 50) ;

What is Wrong with this Statement?

SELECT employee_id, last name
FROM employees

wHERE -

(SELECT MIN(salary)
FROM emglngees
| GROUP BY department id) ;

ERROR at line 4:
ORA-01427: =ingle-row subquery returns more than
one row

iIngle-row operator with multiple-row
subqguery

Will this Statement Return Rows?

FROM employees
WHERE last name = 'Haas');

\\\\\\\\\\\ el

|no rows selected I

Subqguery returns no values

Multiple-Row Subqueries

Return more than one row
Use multiple-row comparison operators

Operator Meaning
IN Equal to any member in the list
ANY Compare value to each value returned by
the subquery

Compare value to every value returned by

ALL
the subquery

Using the aNY Operator in Multiple-Row

Subqueries

SELECT employee id, last name, job_id, salary
FROM employees
WHERE =salary <|ANY

(SELECT salary

FROM employees

WHERE job _id = 'IT PROG')
jJeb_id <> 'IT PROG';

EMPLOYEE_ID LAST HAME JOB_ID SALARY
124 |Mourgos ST _MAN 5600
141 |Rajs ol _CLERK 3500
142 |[Dawies aT_CLERK 3100
143 |Matos ST_CLERK 2600
144 |Vargas ST_CLERK 2600

L Iy
10 rows selected

Using the ALL Operator in Multiple-Row Subqueries

SELECT employee id, last name, job_id, salary
FROM employees
WHERE salary <

\

(SELECT salary)

FROM employees

WHERE job id = 'IT_PROG')
job_id <> 'IT PROG';

EMPLOYEE_ID LAST_NAME JOB_ID SALARY
141 |Rajs ST _CLERK 3500
142 |Davies ST_CLERK 3100

143 |Matos ST_CLERK 2600
144 Wargas ST_CLERK 2500

Null Values in a Subquery

SELECT emp.last name

FROM employees emp

WHERE emp.employee_ id NOT IN
(SELECT mgr.manager_ id
FROM employees mgr) ;

no rows selected

Any, Some, All

theta ANY
theta SOME
theta ALL theta e 9

vV IV IN A H

The ALL keyword modifies the greater than comparison operator
to mean greater than all values.

The ANY keyword is not as restrictive as the ALL keyword.

When used with the greater than comparison operator, "> ANY"
means greater than some value.,

The "= ANY" operator is exactly equivalent to the IN operator.
However, the "= ANY" (not equal any) is not equivalent to the
NOT IN operator.

Any, Some, All

Give the providers whose status are not maximum.

1- SELECT S#
FROM S
WHERE STATUS <ANY (SELECT DISTINCT STATUS FROM S)

2-SELECT S#
FROM S
WHERE STATUS < (SELECT MAX (STATUS) FROM S)

Subqueries and the EXISTS Operator

When a subquery uses the EXISTS operator, the subquery functions
as an existence test.

The WHERE clause of the outer query tests for the existence of rows
returned by the inner query.

The subquery does not actually produce any data; rather, it returns
a value of TRUE or FALSE.

The general format of a subquery WHERE clause with an EXISTS
operator is shown here.

WHERE [NOT] EXISTS (subquery)

SELECT emp last name "Last Name", emp first name "First Name"
FROM employee
WHERE EXISTS

(SELECT *

FROM dependent

WHERE emp ssn = dep emp ssn);

Last Name First Name

Joyner Suzanne
Zhu Waiman
Bock Douglas

Subgueries and the EXISTS operator

Subqueries using an EXISTS operator are a bit different from other
subqgueries, in the following ways:

The keyword EXISTS is not preceded by a column name,
constant, or other expression.

The SELECT clause list of a subquery that uses an EXISTS
operator almost always consists of an asterisk (*). This is
because there is no real point in listing column names since
you are simply testing for the existence of rows that meet the
conditions specified in the subqguery.

The subqguery evaluates to TRUE or FALSE rather than
returning any data.

A subquery that uses an EXISTS operator will always be @
correlated subqueruy.

Subgueries and the EXISTS operator

The EXISTS operator is very important, because there is
often no alternative to its use.

All queries that use the IN operator or a modified
comparison operator (=, <, >, etc. modified by ANY or
ALL) can be expressed with the EXISTS operator.

However, some queries formulated with EXISTS cannot
be expressed in any other way!

The NOT EXISTS operator is the mirror-image of the
EXISTS operator.

A query that uses NOT EXISTS in the WHERE clause is
satisfied if the subquery returns no rows.

Subqueries and the EXISTS operator

SELECT
emp last name

FROM employee

WHERE EXISTS
(SELECT *
FROM dependent

WHERE emp ssn
= dep _emp ssn) ;

SELECT emp last name

FROM employee

WHERE emp ssn = ANY
(SELECT dep emp ssn
FROM dependent) ;

EMP LAST NAME

EMP LAST NAME

Subqueries and the ORDER BY Clause

The SELECT statement shown below adds the ORDER BY
clause to specify sorting by first name within last name.
Note that the ORDER BY clause is placed after the
WHERE clause, and that this includes the subquery as
part of the WHERE clause.

SELECT emp last name "Last Name",
emp first name "First Name"

FROM employee

WHERE EXISTS

Output:

Last Name First Name

(SELECT * e
FROM dependent Bock Douglas
WHERE emp ssn = dep emp ssn) Joyner Suzanne

ORDER BY emp last name, emp first name; 2hu Walman

Untion Joins allow multiple query results to be combined into a single result
se

Syntax Example
Select select list Select person_id,
From table [, table, ...] person city, person state
[Where condition] From People
Union [All] ,
Select select list Union
From table [,table, ...] Select studio id,
[Where condition] studio city,

studio state

Notes: From Studios

The number of columns selected for both the queries should be the same
The columns are merged in order in which they are selected

The duplicates are eliminated from the combined table

More than two tables can be joined together

Union (ALl § Order By)

Union query eliminates all duplicates in the resultant table

Union All'is used when we do not want to eliminate the duplicates
Union and Union distinct are the same.

Union and Order By can be used together to order the results of
the combined table

This clause is not allowed when a single column result is obtained and the all keyword is used since the
duplicates are eliminated and there is nothing to order by

Example

Select studio id, studio state
From Studios

Union

Select Person id, person_ state
From People

Order By studio state

Intersect

In the Intersect Query results of two separate queries
are concatenated, however, only common elements
of the two queries are included in the resultset
Example

Select person state
From People
Intersect

Select studio state

From Studios

EXCEPT

R.A
R, S
R.A=S.A

RA
R, T
RA=T.A

Subquery Benefits

They can simplify the logic and readability of your

query, especially if you need to filter or aggregate

data before joining it with another table.

They can help you avoid duplicate rows or columns

that might result from a join operation.

They can enable you to perform complex calculations

or comparisons that might not be possible with a join.
For example, you can use a subquery to find the average

salary of each department, and then compare it with the
salary of each employee in the main query.

Subquery Drawbacks

Subqueries also have some drawbacks that can affect database
performance.
They can increase the processing time and memory usage of
your query, especially if the subquery returns a large number of
rows or columns.
They can limit the optimization options of the database system,
as some subqueries cannot use indexes or other techniques to
speed up the execution.
They can introduce errors or inconsistencies if the subquery is not
correlated with the main query, or if the subquery data changes
during the execution of the main quervy.

Join Benefits

Joins are another way to query data from multiple tables in a
database.

They can reduce the number of queries and subqueries needed
to retrieve the data you want, which can save processing time
and memory.

They can leverage the indexes and other features of the
database system to optimize the join operation and make it
faster and more efficient.

They can ensure the consistency and accuracy of the data, as the
join condition determines which rows from each table are
matched and returned.

Join Drawbacks

They can complicate the syntax and readability of your query,
especially if you need to join multiple tables or use different types
of joins.

They can generate unwanted or redundant rows or columns that
might affect the quality and size of the result set.

They can require careful planning and design of the database
schema and the join condition, as poorly structured or indexed
tables or columns can slow down or fail the join operation.

How to choose

Deciding whether to use a subquery or a join for your query is dependent
on various factors, such as the data structure, the query complexity, the
database system, and the performance goals.

As a general guideline, you should use a subquery if you need to filter or
aggregate data before joining it with another table, or if you need to
perform calculations or comparisons that are not possible with a join. On
the other hand, if you need to query data from multiple tables based on
a common column or condition, or if you want to take advantage of the
optimization features of the database system, then using a join is
recommended.

Ultimately, it is best to test and compare the execution time and result
set of both options and choose the one that meets your requirements
and expectations.

Nested queries as alternatives to INTERSECT and EXCEPT

R.B=S.B)

INTERSECT and EXCEPT
not in some DBMSs!

If R, S have no duplicates, then

can write without sub—queries
(HOW?)

Manipulating Data

Maryam Ramezani Database Design 155

Adding a New Row to a Table

| 70 |Public Relations | 100 || 70| New
DEPARTMENTS ‘ row
[DEPARTMENT_ID | DEPARTMENT NAME |[MANAGER_ID |LOCATION_ID)
| 10 [Administration | 200 | 1700 ...Insert a new row
| 20 [Marketing | 201 | 1600 into the
I a0 IShipping I 124 I 1500 DEPARMENTS
il 103 1400
| 80 [Sales | 143 | 2500 table...
| a0 |[Executive | 100 || 1700
| 10 |Accounting | 205 | 1700
| 190 |[Contracting | | 1700
[DEPARTMENT ID | DEPARTMENT_NAME |MANAGER_ID |LOCATION_ID
| 10 |Administration | 200 | 1700
| 20 |[Marketing | 01 || 1800
| 50 |[Shipping | 124 | 1500
| B0 |IT | 103 || 1400
| 80 |[Sales | 143 | 2600
| 90 | [Executive | 100 || 1700
| 110 |Accounting | 205 | 1700
| 190 [Contracting | | 1700

| 70 [Public Relations | 100 | 1700

The INSERT Statement Syntax

Add new rows to a table by using the INSERT
statement.

Only one row is inserted at a time with this syntax.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

Inserting New Rows

Insert a new row containing values for each column.
List values in the default order of the columns in the

table.
Optionally, list the columns in the INSERT clause.

INSERT INTO departments (department id, department name,
manager id, location_id)
VALUES (70, 'Public Relations', 100, 1700) ;

1l row created.

Enclose character and date values within single
quotation marks.

Inserting Rows with Null Values

Implicit method: Omit the column from the column list.

INSERT INTO departments (department id,
department_nameD D}

VALUES (30, 'Purchasing'):;

1 row created.

° Explicit method: Specify the NULL keyword in the
VALUES clause.

INSERT INTO departments
VALUES (100, 'Finance', |NULL, |NULL) ;
1 row created.

Inserting Special Values

The current date function records the current date.

INSERT INTO employees (employee id,

first name, last name,
emalil, phone number,

hire datg, job id, salary,
commission pct, manager 1id,
department id)

VALUES (113,

'Louis', 'Popp',

'LPOPP', '515.124.4567",
current date} 'AC ACCOUNT', 6900,
NULL, 205, 100);

1 row created.

Creating a Script

Use : substitution in a SQL statement to prompt for values.
: is a placeholder for the variable value.

INSERT INTO departments
(department_id, department name, location_id)
VALUES (:department_id,| ‘:department name’|

:location) ;

Define Substitution Yariables

"department_id" IAD

"department_name" |Human Resources

“location” [2500

Submit for Execution | Cancel |

|l row created. I

Copying Rows from Another Table

Write your INSERT statement with a subquery.

INSERT INTO sales reps(id, name, salary, commission pct)
SELECT employee 1d, last name, salary, commlssion pcH

FROM employees
WHERE Jjob id LIKE 'SREP%';

4 rows created.

Do not use the VALUES clause.
Match the number of columns in the INSERT clause to
those in the subqueruy.

Chanding Data in a Table

EMPLOYEES

[EMPLOYEE_ID [FIRST_NAME [LAST_NAME | EMAIL [HIRE_DATE| JOB_ID [SALARY DEPARTMENT_ID [COMMISSION_F
| 100 ||Steven [King [SKING [17-JUN-87 [[AD_PRES | 24000 | a0 |

| 101 [Maena [Kochhar |[NKOCHHAR |[21-5EP-89 [AD WP [17000 | a0 |

| 102 [Lex [De Haan [LDEHAAN [13-JAN-B3 [AD_wP | 17000 || an

| 103 |[Alexander [Hunold [&HUNOLD |03-JAN-80 [|IT_PROG [9000 | &0

| 104 |[Bruce [Ernst [BERMST [21-MaAY-81 IT_PROG [&oo0 | B0

| 107 |[Diana [Lorentz [DLORENTZ |07-FEB-22 |[T_PROG [4200 | B0

| 124 |[Kewin [Mourgos |[KMOURGOS [16-NOY-93 |[ST_MAN [=800 | 50 |

Update rows in the EMPLOYEES table.

[EMPLOYEE_ID [FIRST_NAME [LAST NAME| EMAIL |[HIRE_DATE| JOB_ID [SALARY [DEPARTMENT_ID [COMMISSIO

100		Steven [King [SKING [17-Juna7 [aD_PRES	24000	a0
101 [Meena [Kochhar [NKOCHHAR [21-SEP-83 [AD_vP [17000	50			
102	[Lex [De Haan [LDEHAAN [13-JAN-93 [AD_wP	17000		a0
103	[Alexander [Hunold [AHUNOLD [03-Jan-20 [IT_PROG [9000	EN]	
104	[Bruce [Ernst [BERMST [21-mAY-31 [IT_PROG	mono		an
107	[Diana [Lorentz [DLORENMTZ [07-FEE-99	[T_PROG [4200	a0	

124 |[Kevin [Mourgos |[KMOURGOS|[1B-NOW-39 ||ST_MAN 5800 | &0

The UPDATE Statement Syntax

Modify existing rows with the UPDATE statement.

UPDATE table
SET column = value [, column = value, ...]

[WHERE condition] ;

Update more than one row at a time, if required.

Updating Rows in a Table

Specific row or rows are modified if you specify the WHERE clause.

UPDATE employees

S5 department id = 70
|WHERE employee id = 113|;
1 row updated.

All rows in the table are modified if you omit the WHERE clause.

UPDATE copy emp
SET department id = 110;

22 rows updated.

Updating Two Columns with a Subquery

%)éjote employee 114’s job and salary to match that of employee

UPDATE employees
SET job id =|[(SELECT Jjob id
FROM employees
WHERE employee id = 205),
salary =|(SELECT salary
FROM employees
WHERE employee id = 205
WHERE employee id = 114;
1 row updated.

Updating Rows Based on Another Table

Use subquerjes in UPDATE statements to update rows in a table
based on values from another table.

UPDATE |copy_emp|
SET department id = (SELECT department id
FROM| employees
WHERE employee id = 100)
WHERE job 1id = (SELECT Jjob id
FROM| employeesd
WHERE employee id

200) ;

1 row updated.

Updating Rows: Integrity Constraint Error

Department number 55 does not exist in the parent table!

UPDATE employees
SET department id
WHERE department id

55
110;

UPDATE employees
*

ERROR at line 1:

ORA-02291: integrity constraint (HR.EMP DEPT FK)

violated - parent key not found

Removing a Row from a Table

DEPARTMENTS

| DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID [LocaTiON 1D

| 10 |[Administration | 200 | 1700
| 20 [Marketing | 201 || 1800
| 30 |Purchasing

| 100 |Finance

| 80 |[Shipping | 124 | 1500
| g0 I | 103 | 1400

Delete a row from the DEPARTMENTS table.

| DEPARTMENT_ID | DEPARTMENT_NAME [MANAGER_ID [LocaTioN_ID

| 10 |Adrministration | 200 || 1700
| 20 [Marketing | 201 || 1800
| 30 |F'urc:hasing | |

| 50 |[Shipping | 124 || 1500
| B0 (I | 103 || 1400

The DELETE Statement

You can remove existing rows from a table by using
the DELETE statement.

DELETE [FROM] table
[WHERE condition] ;

Deleting Rows from a Table

Specific rows are deleted if you specify the WHERE clause.

DELETE FROM departments
WHERE department name = 'Finance';

1l row deleted.

All rows in the table are deleted if you omit the WHERE clause.

DELETE FROM copy emp;
22 rows deleted.

Deleting Rows Based on Another Table

Use subqueries in DELETE statements to remove rows
from a table based on values from another table.

DELETE FROM employees
WHERE department id =

(SELECT department id
FROM departments
WHERE department name LIKE '%Public%'

1 row deleted.

Deleting Rows: Integrity Constraint Error

You cannot delete a row that contains a primary key that
is used as a foreign key in another table.

DELETE FROM departments
WHERE department id = 60;

DELETE FROM departments
*

ERROR at line 1:
ORA-02292: integrity constraint (HR.EMP DEPT FK)
violated - child record found

Overview of the Explicit Default Feature

With the explicit default feature, you can use the
DEFAULT keyword as a column value where the
column default is desired.

The addition of this feature is for compliance with the
SQL: 1999 Standard.

This allows the user to control where and when the
default value should be applied to data.

Explicit defaults can be used in INSERT and UPDATE
statements.

Using Explicit Default Values

DEFAULT with INSERT:

INSERT INTO departments
(department id, department name, manager_ id)
VALUES (300, 'Engineering', DEFAULT) ;

DEFAULT with UPDATE:

UPDATE departments
SET manager id = DEFAULT WHERE department id = 10;

If no default value for the corresponding column has been specified,
Postgres sets the column to null.

The MERGE Statement

Provides the ability to conditionally update or insert data into @
database table

Avoids separate updates
Increases performance and ease of use

Is useful in data warehousing applications: you may need to work with
data coming from multiple sources, some of which may be duplicates.
With the MERGE statement, you can conditionally add or modify rows.

The MERGE statement is deterministic. You cannot update the
same row of the target table multiple times in the same MERGE
statement.

The MERGE Statement Syntax

You can conditionally insert or update rows in a table
by using the MERGE statement.

MERGE INTO table name table alias
USING (table|view|sub_query) alias
ON (join condition)

WHEN MATCHED THEN
UPDATE SET
coll = col vall,
col2 = col2 val
WHEN NOT MATCHED THEN
INSERT (column list)
VALUES (column values) ;

Merging Rows

j[nst)elrt or update rows in the COPY EMP table to match the EMPLOYEES
able. -

The example shown matches the EMPLOYEE IDinthe COPY EMP table to the EMPLOYEE ID
in the EMPLOYEES table. If a match is found, the row in the COPY EMP table is updated to—
cmc1tch the ErO\IgI in the EMPLOYEES table. If the row is not found, itTs inserted into the

OPY EMP table.

MERGE INTO copy emp cC
USING employees e
ON (c.employee id = e.employee_id)
WHEN MATCHED THEN
UPDATE SET
c.first name = e.first name,
c.last name e.last name,

__c.department id
WHEN NOT MATCHED THEN
INSERT VALUES|(e.employee id, e.first name, e.last name,
€é.émail, e.phone number, e.hire date, e.job_id,

e.salary, e.commission pct, e.manager_ id,
e.department_id) ;

e.department_id

Merging Rows

The condition cemployee_id = e.employee_id is evaluated. Because the COPY_EMP table is empty, the condition returns false: there
are no matches. The logic falls into the WHEN NOT MATCHED clause, and the MERGE command inserts the rows of the EMPLOYEES
table into the COPY_EMP table

If rows existed in the COPY_EMP table and employee IDs matched in both tables (the COPY_EMP and EMPLOYEES tables), the
existing rows in the COPY_EMP table would be updated to match the EMPLOYEES table.

SELECT *
FROM COPY_ EMP;

no rows selected

MERGE INTO copy_emp C
USING employees e
ON (c.employee id = e.employee id)

WHEN MATCHED THEN
UPDATE SET

WHEN NOT MATCHED THEN
INSERT VALUES...;
SELECT *
FROM COPY EMP;

20 rows selected.

Summary

Statement Description

INSERT Adds a new row to the table

UPDATE Modifies existing rows in the table

DELETE Removes existing rows from the table

MERGE Conditionally inserts or updates data in a table

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: SELECT
	Slide 5: Basic SELECT Statement
	Slide 6: Selecting All Columns
	Slide 7: Selecting Specific Columns
	Slide 8: Arithmetic Expressions
	Slide 9: Using Arithmetic Operators
	Slide 10: Operator Precedence & Using Parentheses
	Slide 11: Defining a Null Value
	Slide 12: Using Column Aliases
	Slide 13: Concatenation Operator
	Slide 14: Literal Character Strings
	Slide 15: Duplicate Rows
	Slide 16: Eliminating Duplicate Rows
	Slide 17: Restricting and Sorting
	Slide 18: Limiting Rows Using a Selection
	Slide 19: Limiting the Rows Selected
	Slide 20: Using the WHERE Clause
	Slide 21: Character Strings and Dates
	Slide 22: Comparison Conditions
	Slide 23: Using Comparison Conditions
	Slide 24: Using the BETWEEN Condition
	Slide 25: Using the IN Condition
	Slide 26: Using the LIKE Condition
	Slide 27: Using the LIKE Condition
	Slide 28: Using the NULL Conditions
	Slide 29: Logical Conditions
	Slide 30: Using the AND Operator
	Slide 31: Using the OR Operator
	Slide 32: Using the NOT Operator
	Slide 33: Rules of Precedence
	Slide 34: Rules of Precedence
	Slide 35: Rules of Precedence
	Slide 36: ORDER BY Clause
	Slide 37: Sorting in Descending Order
	Slide 38: Sorting by Column Alias
	Slide 39: Sorting by Multiple Columns
	Slide 40: Summary
	Slide 41: Single-Row Functions
	Slide 42: SQL Functions
	Slide 43: Two Types of SQL Functions
	Slide 44: Single-Row Functions
	Slide 45: Single-Row Functions
	Slide 46: Character Functions
	Slide 47: Case Manipulation Functions
	Slide 48: Using Case Manipulation Functions
	Slide 49: Character-Manipulation Functions
	Slide 50: Using the Character-Manipulation Functions
	Slide 51: Number Functions
	Slide 52: Using the ROUND Function
	Slide 53: Using the TRUNC Function
	Slide 54: Using the MOD Function
	Slide 55: Working with Dates
	Slide 56: Conversion Functions
	Slide 57: Nesting Functions
	Slide 58: Nesting Functions
	Slide 59: Using the CASE Expression
	Slide 60: Displaying Data from Multiple Tables
	Slide 61: Nesting Functions
	Slide 62: Displaying Data from Multiple Tables
	Slide 63: Obtaining Data from Multiple Tables
	Slide 64: Cartesian Products
	Slide 65: Generating a Cartesian Product
	Slide 66: Generating a Cartesian Product
	Slide 67: Join
	Slide 68: Joining Tables
	Slide 69: What is an Equijoin?
	Slide 70: Retrieving Records with Equijoins
	Slide 71: Additional Search Conditions Using the AND Operator
	Slide 72: Qualifying Ambiguous Column Names
	Slide 73: Using Table Aliases
	Slide 74: Joining More than Two Tables
	Slide 75: Non-Equijoins
	Slide 76: Retrieving Records with Non-Equijoins
	Slide 77: Self Joins
	Slide 78: Joining a Table to Itself
	Slide 79: Creating Cross Joins
	Slide 80: Creating Natural Joins
	Slide 81: Retrieving Records with Natural Joins
	Slide 82: Creating Joins with the USING Clause
	Slide 83: Retrieving Records with the USING Clause
	Slide 84: Creating Joins with the ON Clause
	Slide 85: Retrieving Records with the ON Clause
	Slide 86: Creating Three-Way Joins with the ON Clause
	Slide 87: Outer Joins
	Slide 88: Outer Joins Syntax
	Slide 89: LEFT OUTER JOIN
	Slide 90: RIGHT OUTER JOIN
	Slide 91: INNER Versus OUTER Joins
	Slide 92: FULL OUTER JOIN
	Slide 93: Additional Conditions
	Slide 94
	Slide 95: What Are Group Functions?
	Slide 96: Types of Group Functions (Aggregations)
	Slide 97: Group Functions Syntax
	Slide 98: Using the AVG and SUM Functions
	Slide 99: Using the MIN and MAX Functions
	Slide 100: Using the COUNT Function
	Slide 101: Using the COUNT Function
	Slide 102: Using the DISTINCT Keyword
	Slide 103: Group Functions and Null Values
	Slide 104: Creating Groups of Data
	Slide 105: Creating Groups of Data: The GROUP BY Clause Syntax
	Slide 106: Using the GROUP BY Clause
	Slide 107: Using the GROUP BY Clause
	Slide 108: Grouping by More Than One Column
	Slide 109: Using the GROUP BY Clause on Multiple Columns
	Slide 110: Illegal Queries - Using Group Functions
	Slide 111: Illegal Queries - Using Group Functions
	Slide 112: Excluding Group Results
	Slide 113: Excluding Group Results: The HAVING Clause
	Slide 114: Using the HAVING Clause
	Slide 115: Using the HAVING Clause
	Slide 116: Nesting Group Functions
	Slide 117: Summary
	Slide 118
	Slide 119: Using a Subquery to Solve a Problem
	Slide 120: Nested Queries - Definitions
	Slide 121: Nested Queries: Non-Correlated
	Slide 122: Nested Queries: Correlated
	Slide 123: Subquery Syntax
	Slide 124: Using a Subquery
	Slide 125: Guidelines for Using Subqueries
	Slide 126: Types of Subqueries
	Slide 127: Single-Row Subqueries
	Slide 128: Executing Single-Row Subqueries
	Slide 129: Using Group Functions in a Subquery
	Slide 130: The HAVING Clause with Subqueries
	Slide 131: What is Wrong with this Statement?
	Slide 132: Will this Statement Return Rows?
	Slide 133: Multiple-Row Subqueries
	Slide 134: Using the ANY Operator in Multiple-Row Subqueries
	Slide 135: Using the ALL Operator in Multiple-Row Subqueries
	Slide 136: Null Values in a Subquery
	Slide 137: Any, Some, All
	Slide 138: Any, Some, All
	Slide 139: Subqueries and the EXISTS Operator
	Slide 140: Example
	Slide 141: Subqueries and the EXISTS operator
	Slide 142: Subqueries and the EXISTS operator
	Slide 143: Subqueries and the EXISTS operator
	Slide 144: Subqueries and the ORDER BY Clause
	Slide 145: Union
	Slide 146: Union (All & Order By)
	Slide 147: Intersect
	Slide 148: Except
	Slide 149: Subquery Benefits
	Slide 150: Subquery Drawbacks
	Slide 151: Join Benefits
	Slide 152: Join Drawbacks
	Slide 153: How to choose
	Slide 154: Nested queries as alternatives to INTERSECT and EXCEPT
	Slide 155: Manipulating Data
	Slide 156: Adding a New Row to a Table
	Slide 157: The INSERT Statement Syntax
	Slide 158: Inserting New Rows
	Slide 159: Inserting Rows with Null Values
	Slide 160: Inserting Special Values
	Slide 161: Creating a Script
	Slide 162: Copying Rows from Another Table
	Slide 163: Changing Data in a Table
	Slide 164: The UPDATE Statement Syntax
	Slide 165: Updating Rows in a Table
	Slide 166: Updating Two Columns with a Subquery
	Slide 167: Updating Rows Based on Another Table
	Slide 168: Updating Rows: Integrity Constraint Error
	Slide 169: Removing a Row from a Table
	Slide 170: The DELETE Statement
	Slide 171: Deleting Rows from a Table
	Slide 172: Deleting Rows Based on Another Table
	Slide 173: Deleting Rows: Integrity Constraint Error
	Slide 174: Overview of the Explicit Default Feature
	Slide 175: Using Explicit Default Values
	Slide 176: The MERGE Statement
	Slide 177: The MERGE Statement Syntax
	Slide 178: Merging Rows
	Slide 179: Merging Rows
	Slide 180: Summary

