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CREATE TABLE AGENTS (

AGENT_CODE CHAR(6) PRIMARY KEY,

AGENT_NAME CHAR(40),

WORKING_AREA CHAR(35),

COMMISSION NUMERIC(10,2),

PHONE_NO CHAR(15),

COUNTRY VARCHAR(25)

);

CREATE TABLE CUSTOMER (

CUST_CODE VARCHAR(6) PRIMARY KEY,

CUST_NAME VARCHAR(40) NOT NULL,

CUST_CITY CHAR(35),

WORKING_AREA VARCHAR(35) NOT NULL,

CUST_COUNTRY VARCHAR(20) NOT NULL,

GRADE INTEGER,

OPENING_AMT NUMERIC(12,2) NOT NULL,

RECEIVE_AMT NUMERIC(12,2) NOT NULL,

PAYMENT_AMT NUMERIC(12,2) NOT NULL,

OUTSTANDING_AMT NUMERIC(12,2) NOT NULL,

PHONE_NO VARCHAR(17) NOT NULL,

AGENT_CODE CHAR(6) NOT NULL REFERENCES

AGENTS

);

CREATE TABLE ORDERS (

ORD_NUM SERIAL PRIMARY KEY,

ORD_AMOUNT NUMERIC(12,2) NOT NULL,

ADVANCE_AMOUNT NUMERIC(12,2) NOT NULL,

ORD_DATE DATE NOT NULL,

CUST_CODE VARCHAR(6) NOT NULL REFERENCES

CUSTOMER,

AGENT_CODE CHAR(6) NOT NULL REFERENCES

AGENTS,

ORD_DESCRIPTION VARCHAR(60) NOT NULL

);
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 SELECT identifies what columns
 FROM identifies which table
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SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table;
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SELECT *

FROM   departments;
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SELECT department_id, location_id

FROM   departments;
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Create expressions with number and date data by using 
arithmetic operators.
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Operator

+

-

*

/       

Description

Add

Subtract 

Multiply 

Divide
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SELECT last_name, salary, salary + 300

FROM   employees;

…
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SELECT last_name, salary, 12*salary+100

FROM   employees;

…

SELECT last_name, salary, 12*(salary+100)

FROM   employees;

…
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SELECT last_name, 12*salary*commission_pct

FROM   employees;

…

…
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 A null is a value that is unavailable, unassigned, unknown, or 
inapplicable.

 A null is not the same as zero or a blank space.
 Arithmetic expressions containing a null value  evaluate to null.



A column alias:
 Renames a column heading
 Is useful with calculations
 Immediately follows the 
column name - there can also 
be the optional AS keyword 
between the column name 
and alias
 Requires double quotation 

marks if it contains spaces 
or special characters or is 

case sensitive
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SELECT last_name "Name", salary*12 "Annual Salary"

FROM   employees;

SELECT last_name AS name, commission_pct comm

FROM   employees;

…

…
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A concatenation operator:
 Concatenates columns or character strings to other columns 
 Is represented by two vertical bars (||)
 Creates a resultant column that is a character expression
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SELECT last_name||job_id AS "Employees"

FROM employees;

…
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 A literal is a character, a 
number, or a date 
included in the SELECT
list.

 Date and character literal 
values must be enclosed 
within single quotation 
marks.

 Each character string is 
output once for each
row returned.
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…

SELECT last_name ||' is a '||job_id

AS "Employee Details"

FROM   employees;
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 The default display of queries is all rows, including 
duplicate rows.
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SELECT department_id

FROM   employees;

…
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 Eliminate duplicate rows by using the DISTINCT keyword in 
the SELECT clause.
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SELECT DISTINCT department_id

FROM   employees;

16



Maryam Ramezani Database Design 17



Maryam Ramezani Database Design

“retrieve all
employees
in department 90”

EMPLOYEES

…
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 Restrict the rows returned by using the WHERE clause.

 The WHERE clause follows the FROM clause.
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SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];
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 With fixed value

 With variable
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SELECT employee_id, last_name, job_id, department_id

FROM   employees

WHERE  department_id = 90 ;

SELECT employee_id, last_name, job_id, department_id

FROM   employees

WHERE  department_id = :input ;
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 Character strings and date values are enclosed in 
single quotation marks.

 Character values are case sensitive, and date values 
are format sensitive.

 The default date format is DD-MON-RR.
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SELECT last_name, job_id, department_id

FROM   employees

WHERE  last_name = 'Whalen';
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Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than 

Greater than or equal to 

Less than 

Less than or equal to

Not equal to

Operator

BETWEEN

...AND...

IN(set)

LIKE

IS NULL

Meaning

Between two values (inclusive),

Match any of a list of values 

Match a character pattern 

Is a null value 
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SELECT last_name, salary

FROM   employees

WHERE  salary <= 3000;
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 Use the BETWEEN condition to display rows based on a 
range of values.
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SELECT last_name, salary

FROM   employees

WHERE  salary BETWEEN 2500 AND 3500;

Lower limit Upper limit
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SELECT employee_id, last_name, salary, manager_id

FROM   employees

WHERE  manager_id IN (100, 101, 201);

 Use the IN membership condition to test for values in 
a list.
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 Use the LIKE condition to perform wildcard searches 
of valid search string values.

 Search conditions can contain either literal characters 
or numbers:
▪ % denotes zero or many characters.
▪ _ denotes one character.
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SELECT first_name

FROM employees

WHERE first_name LIKE 'S%';
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 You can combine pattern-matching characters.

 You can use the ESCAPE identifier to search for the 
actual % and _ symbols.
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SELECT last_name

FROM   employees

WHERE  last_name LIKE '_o%';
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 Test for nulls with the IS NULL operator.

Maryam Ramezani Database Design

SELECT last_name, manager_id

FROM   employees

WHERE  manager_id IS NULL;
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Operator

AND

OR

NOT

Meaning

Returns TRUE if both component 

conditions are true

Returns TRUE if either component 

condition is true

Returns TRUE if the following  

condition is false
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 AND requires both conditions to be true.
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SELECT employee_id, last_name, job_id, salary

FROM   employees

WHERE  salary >=10000

AND    job_id LIKE '%MAN%';
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 OR requires either condition to be true.
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SELECT employee_id, last_name, job_id, salary

FROM   employees

WHERE  salary >= 10000

OR     job_id LIKE '%MAN%';
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SELECT last_name, job_id

FROM   employees

WHERE  job_id 

NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP');
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Override rules of precedence by using parentheses.

Order Evaluated Operator

1 Arithmetic operators 

2 Concatenation operator

3 Comparison conditions

4 IS [NOT] NULL, LIKE, [NOT] IN

5 [NOT] BETWEEN

6 NOT logical condition

7 AND logical condition

8 OR logical condition
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SELECT last_name, job_id, salary

FROM   employees

WHERE  job_id = 'SA_REP'

OR     job_id = 'AD_PRES'

AND    salary > 15000;
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SELECT last_name, job_id, salary

FROM   employees

WHERE  (job_id = 'SA_REP'

OR     job_id = 'AD_PRES')

AND    salary > 15000;

 Use parentheses to force priority.
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SELECT   last_name, job_id, department_id, hire_date

FROM     employees

ORDER BY hire_date ;

 Sort rows with the ORDER BY clause
▪ ASC: ascending order, default
▪ DESC: descending order

 The ORDER BY clause comes last in the SELECT statement.
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…
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SELECT   last_name, job_id, department_id, hire_date

FROM     employees

ORDER BY hire_date DESC ;

…
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SELECT employee_id, last_name, salary*12 annsal

FROM   employees

ORDER BY annsal;

…
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 The order of ORDER BY list is the order of sort.

 You can sort by a column that is not in the SELECT list.
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SELECT last_name, department_id, salary

FROM   employees

ORDER BY department_id, salary DESC;

…
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In this lesson, you should have learned how to: 
 Use the WHERE clause to restrict rows of output
▪ Use the comparison conditions
▪ Use the BETWEEN, IN, LIKE, and NULL conditions
▪ Apply the logical AND, OR, and NOT operators

 Use the ORDER BY clause to sort rows of output
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SELECT     *|{[DISTINCT] column|expression [alias],...}

FROM       table

[WHERE     condition(s)]

[ORDER BY  {column, expr, alias} [ASC|DESC]];
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Function
Input

arg 1

arg 2

arg n

Function 

performs action

Output

Result

value

42



Maryam Ramezani Database Design

Functions

Single-row 

functions

Multiple-row

functions
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Single row functions:
 Manipulate data items
 Accept arguments and return one value
 Act on each row returned
 Return one result per row
 May modify the data type
 Can be nested
 Accept arguments which can be a column or an 

expression
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function_name [(arg1, arg2,...)]
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Conversion

Character

Number

Date

General
Single-row 

functions
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Character

functions

LOWER

UPPER

INITCAP

CONCAT

SUBSTR

LENGTH

INSTR

LPAD | RPAD

TRIM

REPLACE

Case-manipulation 

functions

Character-manipulation

functions
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Function Result

 These functions convert case for character strings.
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LOWER('SQL Course')

UPPER('SQL Course')

INITCAP('SQL Course')

sql course

SQL COURSE

Sql Course
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 Display the employee number, name, and department 
number for employee Higgins:
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SELECT employee_id, last_name, department_id

FROM   employees

WHERE  last_name = 'higgins';

no rows selected

SELECT employee_id, last_name, department_id

FROM   employees

WHERE  LOWER(last_name) = 'higgins';
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CONCAT('Hello', 'World')

SUBSTR('HelloWorld',1,5)

LENGTH('HelloWorld')

INSTR('HelloWorld', 'W')

LPAD(salary,10,'*')

RPAD(salary, 10, '*')

TRIM('H' FROM 'HelloWorld')

HelloWorld

Hello

10

6

*****24000

24000*****

elloWorld

Function Result

 These functions manipulate character strings:

Maryam Ramezani Database Design 49



SELECT employee_id, CONCAT(first_name, last_name) NAME, 

job_id, LENGTH (last_name), 

INSTR(last_name, 'a') "Contains 'a'?"

FROM   employees

WHERE  SUBSTR(job_id, 4) = 'REP';
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1

2

31 2

3
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 ROUND: Rounds value to specified decimal
ROUND(45.926, 2) 45.93

 TRUNC: Truncates value to specified decimal
TRUNC(45.926, 2) 45.92

 MOD: Returns remainder of division
MOD(1600, 300) 100
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SELECT ROUND(45.923,2), ROUND(45.923,0),

ROUND(45.923,-1)

FROM   DUAL;
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DUAL is a dummy table you can use to view results 
from functions and calculations. Postgres does not need it!!

1 2

3

31 2
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SELECT  TRUNC(45.923,2), TRUNC(45.923),

TRUNC(45.923,-2)

FROM   DUAL;
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31 2

1 2

3
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SELECT last_name, salary, MOD(salary, 5000)

FROM   employees

WHERE  job_id = 'SA_REP';

 Calculate the remainder of a salary after it is divided 
by 5000 for all employees whose job title is sales 
representative.

Maryam Ramezani Database Design 54



Maryam Ramezani Database Design

Number of months
between two dates

MONTHS_BETWEEN

ADD_MONTHS

NEXT_DAY

LAST_DAY

ROUND

TRUNC 

Add calendar months to 
date

Next day of the date 
specified

Last day of the month

Round date 

Truncate date

Function Description
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Implicit data type

conversion

Explicit data type

conversion

Data type

conversion
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 Single-row functions can be nested to any level.
 Nested functions are evaluated from deepest level to 

the least deep level.
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F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3
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SELECT last_name,

coalesce (null,null,'No Manager')

FROM   employees

WHERE  manager_id IS NULL;
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SELECT last_name, job_id, salary,

CASE job_id WHEN 'IT_PROG'  THEN  1.10*salary

WHEN 'ST_CLERK' THEN  1.15*salary

WHEN 'SA_REP'   THEN  1.20*salary

ELSE      salary END     "REVISED_SALARY"

FROM   employees;

 Facilitates conditional inquiries by doing the work of  
an IF-THEN-ELSE statement:
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…

…
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 Single-row functions can be nested to any level.
 Nested functions are evaluated from deepest level to 

the least deep level.

Maryam Ramezani Database Design

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3
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EMPLOYEES DEPARTMENTS 

…

…
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 A join combines two or more tables side by side. If you do 
not specify how to join the tables, you get a Cartesian 
product. This means that SQL combines each row from the 
first table with every row from the second table.

 A Cartesian product is formed when:
▪ A join condition is omitted
▪ A join condition is invalid
▪ All rows in the first table are joined to all rows in the second table

 To avoid a Cartesian product, always include a valid join 
condition in a WHERE clause.
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 SELECT A.*, B.* FROM FRUITS A, SIZES B
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Cartesian

product: 

20x8=160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…
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 SELECT A.fruitName, B.sizeName FROM FRUITS A,SIZES B 

WHERE A.FRUITID = B.FRUITID; 
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 Use a join to query data from more than one table.

 Write the join condition in the WHERE clause.
 Prefix the column name with the table name when the 

same column name appears in more than one table.
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SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column1 = table2.column2;
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 An equijoin is a join 
based on equality or 
matching column 
values. This equality is 
indicated with an 
equal sign (=) as the 
comparison operator 
in the WHERE clause, 
as the following query 
shows.
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EMPLOYEES DEPARTMENTS 

Foreign key Primary key

… …
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SELECT employees.employee_id, employees.last_name, 

employees.department_id, departments.department_id,

departments.location_id

FROM   employees, departments

WHERE  employees.department_id = departments.department_id;
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…
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SELECT last_name, employees.department_id,department_name

FROM   employees, departments

WHERE  employees.department_id = departments.department_id

AND    last_name = 'Matos'
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EMPLOYEES DEPARTMENTS

… …
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 Use table prefixes to qualify column names that are in 
multiple tables.

 Improve performance by using table prefixes.
 Distinguish columns that have identical names but 

reside in different tables by using column aliases.
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SELECT e.employee_id, e.last_name, e.department_id,

d.department_id, d.location_id

FROM   employees e , departments d

WHERE  e.department_id = d.department_id;

 Simplify queries by using table aliases.
 Improve performance by using table prefixes.
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 To join n tables together, you 
need a minimum of n-1 join 
conditions. For example, to join 
three tables, a minimum of two 
joins is required.
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EMPLOYEES LOCATIONSDEPARTMENTS

…
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EMPLOYEES JOB_GRADES

Salary in the EMPLOYEES

table must be between 

lowest salary and highest 

salary in the JOB_GRADES

table.

…
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SELECT e.last_name, e.salary, j.grade_level

FROM   employees e, job_grades j

WHERE  e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

…
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EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

MANAGER_ID in the WORKER table is equal to 

EMPLOYEE_ID in the MANAGER table.

… …
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SELECT worker.last_name || ' works for ' 

|| manager.last_name

FROM   employees worker, employees manager

WHERE  worker.manager_id = manager.employee_id ;

…
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 The CROSS JOIN clause produces the cross-product 
of two tables. 

 This is the same as a Cartesian product between the 
two tables. 
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SELECT last_name, department_name

FROM   employees

CROSS JOIN departments ;

…
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 The NATURAL JOIN clause is based on all columns in 
the two tables that have the same name.

 It selects rows from the two tables that have equal 
values in all matched columns.

 If the columns having the same names have different 
data types, an error is returned.
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SELECT department_id, department_name,

location_id, city

FROM   departments

NATURAL JOIN locations ;

Maryam Ramezani Database Design 81



 If several columns have the same names but the data 
types do not match, the NATURAL JOIN clause can be 
modified with the USING clause to specify the columns 
that should be used for an equijoin.

 Use the USING clause to match only one column when 
more than one column matches.

 Do not use a table name or alias in the referenced 
columns.

 The NATURAL JOIN and USING clauses are mutually 
exclusive.
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SELECT e.employee_id, e.last_name, d.location_id

FROM   employees e JOIN departments d

USING (department_id) ;
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…

SELECT employee_id, last_name, 

employees.department_id, location_id

FROM   employees, departments

WHERE  employees.department_id = departments.department_id;
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 The join condition for the natural join is basically an 
equijoin of all columns with the same name.

 To specify arbitrary conditions or specify columns to 
join, the ON clause is used.

 The join condition is separated from other search
conditions.

 The ON clause makes code easy to understand.
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SELECT e.employee_id, e.last_name, e.department_id, 

d.department_id, d.location_id

FROM   employees e JOIN departments d

ON     (e.department_id = d.department_id);
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…
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SELECT employee_id, city, department_name

FROM   employees e 

JOIN   departments d

ON     d.department_id = e.department_id

JOIN   locations l

ON     d.location_id = l.location_id;

…
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EMPLOYEESDEPARTMENTS

There are no employees in 

department 190. 

…
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 You use an outer join to also see rows that do not 
meet the join condition.

 The left and right joint are the syntax.
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SELECT table1.column, table2.column

FROM table1 left join table2

on table1.column = table2.column;

SELECT table1.column, table2.column

FROM table1 right join table2

on table1.column table2.column;
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SELECT e.last_name, e.department_id, d.department_name

FROM   employees e

LEFT OUTER JOIN departments d

ON   (e.department_id = d.department_id) ;
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…
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SELECT e.last_name, e.department_id, d.department_name

FROM   employees e

RIGHT OUTER JOIN departments d

ON    (e.department_id = d.department_id) ;
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…
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 In SQL: 1999, the join of two tables returning only 
matched rows is an inner join.

 A join between two tables that returns the results of 
the inner join as well as unmatched rows left (or right) 
tables is a left (or right) outer join.

 A join between two tables that returns the results of an 
inner join as well as the results of a left and right join is 
a full outer join.
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SELECT e.last_name, e.department_id, d.department_name

FROM   employees e

FULL OUTER JOIN departments d

ON   (e.department_id = d.department_id) ;
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…
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SELECT e.employee_id, e.last_name, e.department_id, 

d.department_id, d.location_id

FROM   employees e JOIN departments d

ON     (e.department_id = d.department_id)

AND    e.manager_id = 149 ;
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Aggregating Data 
Using Group Functions

03
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 Group functions operate on sets of rows to give one result per group.
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• AVG
• COUNT
• MAX
• MIN
• STDDEV
• SUM
• VARIANCE
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 You can use AVG and SUM for numeric data.
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 You can use MIN and MAX for any data type.
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 COUNT(*) returns the number of rows in a table.
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 COUNT(expr) returns the number of rows with non-null values for
the expr.

 Display the number of department values in the EMPLOYEES table,
excluding the null values.
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 COUNT(DISTINCT expr) returns the number of distinct non-null values 
of the expr.

 Display the number of distinct department values in the EMPLOYEES table.
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 Group functions ignore null values in the column.

 The coalesce function forces group functions to include null values.
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 Divide rows in a table into smaller groups by using the GROUP BY
clause.
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 All columns in the SELECT list that are not in group functions 
must be in the GROUP BY clause.
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 The GROUP BY column does not have to be in the  SELECT list.
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 Any column or expression in the SELECT list that is not an 
aggregate function must be in the GROUP BY clause. 

 Column missing in the GROUP BY clause:
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 You cannot use the WHERE clause to restrict groups.
 You use the HAVING clause to restrict groups.
 You cannot use group functions in the WHERE clause.
 Cannot use the WHERE clause to restrict groups:
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Use the HAVING clause to restrict groups:
1. Rows are grouped.
2. The group function is applied.
3. Groups matching the HAVING clause are displayed.
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 Display the maximum average salary.
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You should have learned how to: 
 Use the group functions COUNT, MAX, MIN, AVG
 Write queries that use the GROUP BY clause
 Write queries that use the HAVING clause 
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Subqueries

04
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Who has a salary greater than Abel’s?
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 A nested query is a query inside another query
▪ The enclosing query also called outer query.
▪ Nested query is called inner query.

 It usually appears as a condition in where or having clauses.

 There can be multiple levels of nesting

 There are two kinds of nested queries
▪ Correlated
▪ Non-Correlated

Example:
Select movie_title

From movies
Where director_id IN (

Select person_id
From People
Where person_state = ‘TX’)
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 Generates data required by outer query before it can be executed
 Inner query does not contain any reference to outer query
 Behaves like a procedure
 The result should not contain any column from the nested query
 Example:

Schema:
o People(person_fname, person_lname, person_id, person_state, person_city)

o Movies(movie_id, movie_title, director_id, studio_id)

Query: Select movie_title, studio_id
From Movies
Where director_id IN (Select person_id

From People

Where person_state = ‘TX’)

Steps: 
o Subquery is executed
o Subquery results are plugged into the outer query
o The outer query is processed
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 Contains reference to the outer query.
 Behaves like a loop.

Example:

Schema: People(person_fname, person_lname, person_id, person_state, person_city)
Cast_Movies(cast_member_id, role, movie_id)

Query:   select person_fname, person_lname

From People p1

Where ‘Pam Green’ in ( Select role

From Cast_Movies

Where p1.person_id = cast_member_id) 

Steps:
▪ Contents of the table row in outer query are read 
▪ Sub-query is executed using data in the row being processed.
▪ Results of the inner query are passed to the where in the outer query
▪ The Outer query is Processed
▪ Loop continues till all rows are exhausted 
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 The subquery (inner query) executes once before the main query.
 The result of the subquery is used by the main query (outer query).
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 Enclose subqueries in parentheses. 
 Place subqueries on the right side of the comparison condition.
 The ORDER BY clause in the subquery is not needed unless you are 

performing Top-N analysis.
 Use single-row operators with single-row subqueries and use multiple-row 

operators with multiple-row subqueries.
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 Types of Subqueries
▪ Single-row subqueries: Queries that return only one row from the inner 
SELECT statement

▪ Multiple-row subqueries: Queries that return more than one row from the 
inner SELECT statement
▪ Note: There are also multiple-column subqueries: Queries that return more than one column from 

the inner SELECT statement. 
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 Return only one row
 Use single-row comparison operators
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 The Oracle server executes subqueries first.
 The Oracle server returns results into the HAVING clause of the main query.
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 Return more than one row
 Use multiple-row comparison operators
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SELECT employee_id, last_name, job_id, salary

FROM   employees

WHERE  salary < ALL

(SELECT salary

FROM   employees

WHERE  job_id = 'IT_PROG')

AND    job_id <> 'IT_PROG';
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9000, 6000, 4200 
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SELECT emp.last_name

FROM   employees emp

WHERE  emp.employee_id NOT IN

(SELECT mgr.manager_id

FROM   employees mgr);

no rows selected
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 The ALL keyword modifies the greater than comparison operator 
to mean greater than all values. 

 The ANY keyword is not as restrictive as the ALL keyword. 
 When used with the greater than comparison operator, "> ANY" 

means greater than some value. 
 The "= ANY" operator is exactly equivalent to the IN operator. 
 However, the "!= ANY" (not equal any) is not equivalent to the 

NOT IN operator.
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theta ANY

theta SOME

theta ALL

=

≠

<

≤

≥

>

theta ∈
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 Give the providers whose status are not maximum. 
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1- SELECT   S#

FROM   S

WHERE   STATUS < ANY ( SELECT  DISTINCT   STATUS   FROM   S )

2- SELECT   S#

FROM   S

WHERE   STATUS <  ( SELECT   MAX (STATUS)    FROM    S)
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❑When a subquery uses the EXISTS operator, the subquery functions 
as an existence test.  

❑The WHERE clause of the outer query tests for the existence of rows 
returned by the inner query.

❑The subquery does not actually produce any data; rather, it returns 
a value of TRUE or FALSE.  

❑The general format of a subquery WHERE clause with an EXISTS 
operator is shown here.

❑Note that the NOT operator can also be used to negate the result of 
the EXISTS operator.

WHERE [NOT] EXISTS (subquery)
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SELECT emp_last_name "Last Name", emp_first_name "First Name"

FROM employee

WHERE EXISTS

(SELECT *

FROM dependent

WHERE emp_ssn = dep_emp_ssn);

Last Name  First Name

---------- ---------------

Joyner     Suzanne

Zhu        Waiman

Bock       Douglas
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❑ Subqueries using an EXISTS operator are a bit different from other 
subqueries, in the following ways:

o The keyword EXISTS is not preceded by a column name, 
constant, or other expression.

o The SELECT clause list of a subquery that uses an EXISTS 
operator almost always consists of an asterisk (*).  This is 
because there is no real point in listing column names since 
you are simply testing for the existence of rows that meet the 
conditions specified in the subquery. 

o The subquery evaluates to TRUE or FALSE rather than 
returning any data.

o A subquery that uses an EXISTS operator will always be a 
correlated subquery.

Maryam Ramezani Database Design 141



❑ The EXISTS operator is very important, because there is 
often no alternative to its use.

❑ All queries that use the IN operator or a modified 
comparison operator (=, <, >, etc. modified by ANY or 
ALL) can be expressed with the EXISTS operator.

❑ However, some queries formulated with EXISTS cannot 
be expressed in any other way! 

❑ The NOT EXISTS operator is the mirror-image of the 
EXISTS operator.

❑ A query that uses NOT EXISTS in the WHERE clause is 
satisfied if the subquery returns no rows. 
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SELECT emp_last_name

FROM employee

WHERE emp_ssn = ANY

(SELECT dep_emp_ssn

FROM dependent);

EMP_LAST_NAME

-------------

Bock

Zhu

Joyner

SELECT 

emp_last_name

FROM employee

WHERE EXISTS

(SELECT *

FROM dependent

WHERE emp_ssn

= dep_emp_ssn);

EMP_LAST_NAME

----------------

Bock

Zhu

Joyner
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 The SELECT statement shown below adds the ORDER BY
clause to specify sorting by first name within last name.

 Note that the ORDER BY clause is placed after the
WHERE clause, and that this includes the subquery as
part of the WHERE clause.

SELECT emp_last_name "Last Name",

emp_first_name "First Name"

FROM employee

WHERE EXISTS

(SELECT *

FROM dependent

WHERE emp_ssn = dep_emp_ssn)

ORDER BY emp_last_name, emp_first_name;
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Output:

Last Name  First Name

---------- ----------

Bock       Douglas

Joyner     Suzanne

Zhu        Waiman
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 Union Joins allow multiple query results to be combined into a single result 
set

Syntax
Select select_list

From table [,table, ….]

[Where condition]

Union [All]

Select select_list

From table [,table, ….]

[Where condition]

 Notes: 
▪ The number of columns selected for both the queries should be the same
▪ The columns are merged in order in which they are selected
▪ The duplicates are eliminated from the combined table
▪ More than two tables can be joined together
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Example

Select person_id, 

person_city, person_state

From People

Union

Select studio_id, 

studio_city, 

studio_state

From Studios
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 Union query eliminates all duplicates in the resultant table
▪ Union All is used when we do not want to eliminate the duplicates 
▪ Union and Union distinct are the same.

 Union  and Order By can be used together to order the results of 
the combined table
▪ This clause is not allowed when a single column result is obtained and the all keyword is used since the 

duplicates are eliminated and there is nothing to order by

 Example
Select studio_id, studio_state

From Studios

Union 

Select Person_id, person_state

From People 

Order By studio_state
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 In the Intersect Query results of two separate queries 
are concatenated, however, only common elements 
of the two queries are included in the resultset

 Example
Select person_state

From People

Intersect

Select studio_state

From Studios
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SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Q1 Q2

148



 They can simplify the logic and readability of your 
query, especially if you need to filter or aggregate 
data before joining it with another table. 

 They can help you avoid duplicate rows or columns 
that might result from a join operation. 

 They can enable you to perform complex calculations 
or comparisons that might not be possible with a join. 
▪ For example, you can use a subquery to find the average 

salary of each department, and then compare it with the 
salary of each employee in the main query.
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Subqueries also have some drawbacks that can affect database 
performance.
 They can increase the processing time and memory usage of 

your query, especially if the subquery returns a large number of 
rows or columns. 

 They can limit the optimization options of the database system, 
as some subqueries cannot use indexes or other techniques to 
speed up the execution.

 They can introduce errors or inconsistencies if the subquery is not 
correlated with the main query, or if the subquery data changes 
during the execution of the main query.
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Joins are another way to query data from multiple tables in a 
database. 

 They can reduce the number of queries and subqueries needed 
to retrieve the data you want, which can save processing time 
and memory. 

 They can leverage the indexes and other features of the 
database system to optimize the join operation and make it 
faster and more efficient. 

 They can ensure the consistency and accuracy of the data, as the 
join condition determines which rows from each table are 
matched and returned.
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 They can complicate the syntax and readability of your query, 
especially if you need to join multiple tables or use different types 
of joins. 

 They can generate unwanted or redundant rows or columns that 
might affect the quality and size of the result set. 

 They can require careful planning and design of the database 
schema and the join condition, as poorly structured or indexed 
tables or columns can slow down or fail the join operation.
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 Deciding whether to use a subquery or a join for your query is dependent 
on various factors, such as the data structure, the query complexity, the 
database system, and the performance goals. 

 As a general guideline, you should use a subquery if you need to filter or 
aggregate data before joining it with another table, or if you need to 
perform calculations or comparisons that are not possible with a join. On 
the other hand, if you need to query data from multiple tables based on 
a common column or condition, or if you want to take advantage of the 
optimization features of the database system, then using a join is 
recommended. 

 Ultimately, it is best to test and compare the execution time and result 
set of both options and choose the one that meets your requirements 
and expectations.
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(SELECT R.A, R.B

FROM R)

INTERSECT

(SELECT S.A, S.B

FROM S)

SELECT R.A, R.B

FROM R

WHERE EXISTS(

SELECT *

FROM S

WHERE R.A=S.A 

AND R.B=S.B)

SELECT R.A, R.B

FROM R

WHERE NOT EXISTS(

SELECT *

FROM S

WHERE R.A=S.A AND 

R.B=S.B)

INTERSECT and EXCEPT 
not in some DBMSs!

If R, S have no duplicates, then 
can write without sub-queries 
(HOW?)

(SELECT R.A, R.B

FROM R)

EXCEPT

(SELECT S.A, S.B

FROM S)
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DEPARTMENTS 
New 
row

…insert a new row 
into the 

DEPARMENTS
table…
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 Add new rows to a table by using the INSERT
statement.

 Only one row is inserted at a time with this syntax.
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INSERT INTO table [(column [, column...])]

VALUES (value [, value...]);
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 Insert a new row containing values for each column.
 List values in the default order of the columns in the 

table. 
 Optionally, list the columns in the INSERT clause.

 Enclose character and date values within single 
quotation marks.
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INSERT INTO departments(department_id, department_name, 

manager_id, location_id)

VALUES      (70, 'Public Relations', 100, 1700);

1 row created.
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INSERT INTO departments

VALUES (100, 'Finance', NULL, NULL);

1 row created.

INSERT INTO departments (department_id, 

department_name    )

VALUES (30, 'Purchasing');

1 row created.

 Implicit method: Omit the column from the column list.
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• Explicit method: Specify the NULL keyword in the 
VALUES clause.
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 The current_date function records the current date.
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INSERT INTO employees (employee_id, 

first_name, last_name, 

email, phone_number,

hire_date, job_id, salary, 

commission_pct, manager_id,

department_id)

VALUES (113, 

'Louis', 'Popp', 

'LPOPP', '515.124.4567’, 

current_date, 'AC_ACCOUNT', 6900, 

NULL, 205, 100);

1 row created.
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INSERT INTO departments 

(department_id, department_name, location_id)

VALUES      (:department_id, ‘:department_name’,:location);

 Use : substitution in a SQL statement to prompt for values.
 : is a placeholder for the variable value.
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1 row created.
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 Write your INSERT statement with a subquery.

 Do not use the VALUES clause.
 Match the number of columns in the INSERT clause to 

those in the subquery.
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INSERT INTO sales_reps(id, name, salary, commission_pct)

SELECT employee_id, last_name, salary, commission_pct

FROM   employees

WHERE  job_id LIKE '%REP%';

4 rows created.
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EMPLOYEES

Update rows in the EMPLOYEES table.
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 Modify existing rows with the UPDATE statement.

 Update more than one row at a time, if required.
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UPDATE table

SET column = value [, column = value, ...]

[WHERE condition];
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UPDATE employees

SET    department_id = 70

WHERE  employee_id = 113;

1 row updated.

 Specific row or rows are modified if you specify the WHERE clause.

 All rows in the table are modified if you omit the WHERE clause.
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UPDATE copy_emp

SET    department_id = 110;

22 rows updated.
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UPDATE   employees

SET      job_id = (SELECT  job_id

FROM    employees 

WHERE   employee_id = 205), 

salary  = (SELECT  salary 

FROM    employees 

WHERE   employee_id = 205) 

WHERE    employee_id =  114;

1 row updated.

 Update employee 114’s job and salary to match that of employee 
205.
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UPDATE  copy_emp

SET     department_id =  (SELECT department_id

FROM employees

WHERE employee_id = 100)

WHERE   job_id =  (SELECT job_id

FROM employees

WHERE employee_id = 200);

1 row updated.

 Use subqueries in UPDATE statements to update rows in a table 
based on values from another table.
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UPDATE employees

*

ERROR at line 1:

ORA-02291: integrity constraint (HR.EMP_DEPT_FK) 

violated - parent key not found

UPDATE employees

SET    department_id = 55

WHERE  department_id = 110;

Department number 55 does not exist in the parent table!
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Delete a row from the DEPARTMENTS table.
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DEPARTMENTS
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 You can remove existing rows from a table by using  
the DELETE statement.
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DELETE [FROM] table

[WHERE condition];
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 Specific rows are deleted if you specify the WHERE clause.

 All rows in the table are deleted if you omit the WHERE clause.
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DELETE FROM departments

WHERE  department_name = 'Finance';

1 row deleted.

DELETE FROM  copy_emp;

22 rows deleted.
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DELETE FROM employees

WHERE  department_id =

(SELECT department_id

FROM   departments

WHERE  department_name LIKE '%Public%');

1 row deleted.

 Use subqueries in DELETE statements to remove  rows 
from a table based on values from another table.
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You cannot delete a row that contains a primary key that 
is used as a foreign key in another table.
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DELETE FROM departments

WHERE       department_id = 60;

DELETE FROM departments

*

ERROR at line 1:

ORA-02292: integrity constraint (HR.EMP_DEPT_FK) 

violated - child record found
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 With the explicit default feature, you can use the 
DEFAULT keyword as a column value where the 
column default is desired.

 The addition of this feature is for compliance with the 
SQL: 1999 Standard.

 This allows the user to control where and when the 
default value should be applied to data.

 Explicit defaults can be used in INSERT and UPDATE
statements.

Maryam Ramezani Database Design 174



 DEFAULT with INSERT:

 DEFAULT with UPDATE:

 If no default value for the corresponding column has been specified, 
Postgres sets the column to null.
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INSERT INTO departments

(department_id, department_name, manager_id) 

VALUES (300, 'Engineering', DEFAULT);

UPDATE departments 

SET manager_id = DEFAULT WHERE department_id = 10;

175



 Provides the ability to conditionally update or insert data into a 
database table

 Performs an UPDATE if the row exists, and an INSERT if it is a 
new row:
▪ Avoids separate updates
▪ Increases performance and ease of use
▪ Is useful in data warehousing applications:  you may need to work with 

data coming from multiple sources, some of which may be duplicates. 
With the MERGE statement, you can conditionally add or modify rows.

 The MERGE statement is deterministic. You cannot update the 
same row of the target table multiple times in the same MERGE
statement.
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 You can conditionally insert or update rows in a  table 
by using the MERGE statement.
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MERGE INTO table_name table_alias

USING (table|view|sub_query) alias

ON (join condition)

WHEN MATCHED THEN

UPDATE SET 

col1 = col_val1,

col2 = col2_val

WHEN NOT MATCHED THEN

INSERT (column_list)

VALUES (column_values);
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MERGE INTO copy_emp c

USING employees e

ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN

UPDATE SET

c.first_name = e.first_name,

c.last_name = e.last_name,

...

c.department_id = e.department_id

WHEN NOT MATCHED THEN

INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,

e.salary, e.commission_pct, e.manager_id, 

e.department_id);
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 Insert or update rows in the COPY_EMP table to match the EMPLOYEES
table.
▪ The example shown matches the EMPLOYEE_ID in the COPY_EMP table to the EMPLOYEE_ID

in the EMPLOYEES table. If a match is found, the row in the COPY_EMP table is updated to 
match the row in the EMPLOYEES table. If the row is not found, it is inserted into the 
COPY_EMP table.
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 The condition c.employee_id = e.employee_id is evaluated. Because the COPY_EMP table is empty, the condition returns false: there 
are no matches.  The logic falls into the WHEN NOT MATCHED clause, and the MERGE command inserts the rows of the EMPLOYEES 
table into the COPY_EMP table. 

 If rows existed in the COPY_EMP table and employee IDs matched in both tables (the COPY_EMP and EMPLOYEES tables), the 
existing rows in the COPY_EMP table would be updated to match the EMPLOYEES table. 
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MERGE INTO copy_emp c

USING employees e

ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN

UPDATE SET

...

WHEN NOT MATCHED THEN

INSERT VALUES...;

SELECT * 

FROM COPY_EMP;

no rows selected

SELECT * 

FROM COPY_EMP;

20 rows selected.
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Description

Adds a new row to the table

Modifies existing rows in the table

Removes existing rows from the table

Conditionally inserts or updates data in a table

Statement

INSERT

UPDATE

DELETE

MERGE
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